Direct effect of heavy ions and electrons on 2′-deoxyguanosine in the solid state

(Note: The full text of this document is currently only available in the PDF Version )

Marina Gromova, Robert Nardin and Jean Cadet


Abstract

Attempts have been made in this work to gain insights into the mechanisms of the formation of degradation products arising from the exposure of 2′-deoxyguanosine (dGuo) in the solid state to O7+ heavy ions of 10.6 MeV u–1 (LET ≈ 500 keV µm–1). The main decomposition products of dGuo have been isolated by reversed-phase high performance liquid chromatography and characterized by extensive spectroscopic (1H and 13C NMR, mass spectrometry, UV) measurements. Reaction mechanisms, involving the transient formation of sugar and purine radical, are proposed to explain the generation of the heavy ion-mediated degradation products. Another major objective of the present work is the comparison of heavy ion-induced modifications of 2′-deoxyguanosine with those produced by lower LET radiation. For this purpose, the samples of 2′-deoxyguanosine were exposed in the solid state to electrons of 2 MeV (LET ≈ 0.18 keV µm–1). It may be inferred from the results of the qualitative and semi-quantitative comparison that the modifications of the sugar moiety are more efficiently induced by heavy ions than by electrons.


References

  1. G. Kraft, M. Krämer and M. Scholz, Radiat. Environ. Biophys., 1992, 31, 161 CAS.
  2. J. Kieffer, Int. J. Radiat. Biol., 1985, 48, 873.
  3. J. Kieffer and E. Schneider, Int. J. Radiat. Biol., 1991, 59, 1415.
  4. G. Kraft, Nucl. Sci. Appl., 1987, 3, 1 Search PubMed.
  5. E. A. Blakely, Radiat. Environ. Biophys., 1992, 31, 181 CAS.
  6. B. Rydberg, Radiat. Res., 1994, 139, 133 CAS.
  7. B. Rydberg, Radiat. Res., 1996, 145, 200 CAS.
  8. V. Michalik, Int. J. Radiat. Biol., 1992, 62, 9 CAS.
  9. V. Michalik, Radiat. Res., 1993, 134, 265.8.
  10. D. T. Goodhead, Int. J. Radiat. Biol., 1994, 65, 7 CAS.
  11. W. R. Holley and A. Chatterjee, Radiat. Res., 1996, 145, 188 CAS.
  12. A. Schaefer, J. Hüttermann and G. Kraft, Int. J. Radiat. Biol., 1993, 63, 139 CrossRef CAS.
  13. D. Becker, Y. Razskazovskii, M. U. Callaghan and M. Sevilla, Radiat. Res., 1996, 146, 361 CrossRef CAS.
  14. R. Roots, A. Chatterjee, P. Chang, L. Lommel and E. A. Blakely, Int. J. Radiat. Biol., 1985, 47, 157 CAS.
  15. J. Stanton, G. Taucher-Scholz, M. Schneider and G. Kraft, Radiat. Prot. Dos., 1990, 31, 253 Search PubMed.
  16. A. Chatterjee and W. R. Holley, Adv. Space Res., 1992, 12, 33 CrossRef CAS.
  17. M. Berger and J. Cadet, Z. Naturforsch., Teil B, 1985, 40, 1519 Search PubMed.
  18. A. Shaw and J. Cadet, Int. J. Radiat. Biol., 1976, 70, 1 CrossRef CAS.
  19. N. Mariaggi, J. Cadet and R. Téoule, Tetrahedron, 1976, 32, 2386 CrossRef.
  20. A. Shaw and J. Cadet, Int. J. Radiat. Biol., 1988, 54, 987 CrossRef CAS.
  21. M. Berger and J. Cadet, Chem. Lett., 1983, 435 CAS.
  22. H. Kasai, Z. Yamaizumi, M. Berger and J. Cadet, J. Am. Chem. Soc., 1992, 114, 9692 CrossRef CAS.
  23. R. A. Floyd, J. J. Watson, P. K. Wong, D. H. Altimiller and R. C. Rickard, Free Rad. Res. Commun., 1986, 1, 163 Search PubMed.
  24. M. Berger, C. Anselmino, J.-F. Mouret and J. Cadet, J. Liq. Chromatogr., 1990, 13, 929 CAS.
  25. C. Decarroz, J. R. Wagner, J. E. van Lier, C. Murali Krishna, P. Riesz and J. Cadet, Int. J. Radiat. Biol., 1976, 50, 491.
  26. J. Cadet, C. Taïeb, M. Remin, W. P. Niemczura and F. E. Hruska, Biochim. Biophys. Acta, 1980, 608, 435 CrossRef CAS.
  27. J. Zemlicka, R. Gasser, J. V. Freisler and J. P. Horwitz, J. Am. Chem. Soc., 1972, 94, 3213 CrossRef CAS.
  28. M. J. Robins, A. J. Roger and R. Mengel, Can. J. Chem., 1977, 55, 1251 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.