Hydrogen bonding. Part 45.† The solubility of gases and vapours in methanol at 298 K: an LFER analysis

(Note: The full text of this document is currently only available in the PDF Version )

Michael H. Abraham, Gary S. Whiting, Peter W. Carr and Hsiu Ouyang


Abstract

Values of the Ostwald solubility coefficient of gases and vapours in methanol solvent, LMeOH, at 298 K have been determined for 23 solutes by an indirect method in which experimental partition coefficients between methanol and hexadecane were combined with literature data on Ostwald solubility coefficients in hexadecane. Another 70 LMeOH values were obtained from literature data and the total 93 values were correlated by the Abraham equation to give the regression, where n = 93, r2 = 0.9952, sd = 0.13 and F = 3681.

The solute descriptors in eqn. (i) are: R2 an excess molar refraction, π2H the dipolarity/polarisability, Σα2H the overall hydrogen-bond acidity, Σβ2H the overall hydrogen-bond basicity and log L16, where L16 is the Ostwald solubility coefficient on hexadecane at 298 K. The number of data points, or solutes, is n, the correlation coefficient is r, the standard deviation is sd and F is the F-statistic. Just as for the case of water solvent, solute dipolarity/polarisability, hydrogen-bond acidity and hydrogen-bond basicity all lead to an increase in log L, although methanol is much less acidic than water. However, contrary to the solubility of vapours in water, the log L16 descriptor now also leads to an increase in log L. Explanations for the different behaviour of water and methanol are given.

An analysis of log P values for the transfer of solutes from water to methanol also shows that bulk methanol is as strong a hydrogen-bond base as bulk water but is a much weaker hydrogen-bond acid.


References

  1. E. Hala, J. Pick, V. Fried and O. Vilim, Vapour-Liquid Equilibrium, 2nd English edn., Pergamon Press, Oxford, 1967 Search PubMed.
  2. M. H. Abraham, J. Chem. Soc. A, 1971, 1061 RSC.
  3. L. Rohrschneider, Anal. Chem., 1973, 45, 1241 CrossRef CAS.
  4. J. H. Park, A. Hussam, P. Couasnon, D. Fritz and P. W. Carr, Anal. Chem., 1987, 59, 1970 CrossRef CAS.
  5. M. H. Abraham, P. L. Grellier and R. A. McGill, J. Chem. Soc., Perkin Trans. 2, 1987, 797 RSC.
  6. M. H. Abraham, J. Andonian-Haftvan, G. S. Whiting, A. Leo and R. W. Taft, J. Chem. Soc., Perkin Trans. 2, 1994, 1777 RSC.
  7. M. H. Abraham, J. Chromatogr., 1993, 644, 95 CrossRef CAS.
  8. M. Schantz, B. N. Barman and D. E. Martire, J. Res. Natl. Bur. Stand., 1988, 93, 161 Search PubMed.
  9. M. H. Abraham, Chem. Soc. Rev., 1993, 22, 73 RSC.
  10. M. H. Abraham, H. S. Chadha and A. Leo, J. Phys. Org. Chem., 1994, 7, 712 CrossRef CAS.
  11. J. Li and P. W. Carr, Anal. Chem., 1993, 65, 1443 CrossRef CAS.
  12. M. F. Vita, A. J. Dallas and P. W. Carr, J. Phys. Chem., 1996, 100, 5050 CrossRef.
  13. A. Berthold, A. I. Mallet and M. Bully, Anal. Chem., 1996, 68, 431 CrossRef.
  14. R. W. Taft, M. H. Abraham, G. R. Famini, R. M. Doherty, J.-L. M. Abboud and M. J. Kamlet, J. Pharm. Sci., 1985, 74, 807 CAS.
  15. M. H. Abraham, H. S. Chadha, G. S. Whiting and R. C. Mitchell, J. Pharm. Sci., 1994, 83, 1085 CAS.
  16. N. El Tayer, R.-S. Tsai, B. Testa, P.-A. Carrupt and A. Leo, J. Pharm. Sci., 1991, 80, 590 CAS.
  17. D. E. Leahy, J. J. Morris, P. J. Taylor and A. R. Wait, J. Chem. Soc., Perkin Trans. 2, 1992, 705 RSC.
  18. M. H. Abraham, H. S. Chadha, J. P. Dixon and A. J. Leo, J. Phys. Org. Chem., 1994, 7, 712 CrossRef CAS.
  19. M. H. Abraham, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 153 RSC.
  20. I. N. Levine, Physical Chemistry, 4th edn., McGraw-Hill, New York, 1995 Search PubMed.
  21. S. Cabani, P. Gianni, V. Mollica and L. Lepori, J. Solution Chem., 1981, 10, 563 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.