Thermal and induced decompositions of N-alkoxycarbonyldihydropyridines: end product analysis and EPR spectra of azacyclohexadienyl radicals

(Note: The full text of this document is currently only available in the PDF Version )

Paul A. Baguley and John C. Walton


Abstract

Hydrogen abstraction from N-alkoxycarbonyldihydropyridines generated azacyclohexadienyl radicals (pyridinyl radicals) which are characterised by EPR spectroscopy. In the presence of peroxide initiators, N-alkoxycarbonyl-1,2-dihydropyridines decomposed with production of pyridine, the corresponding alkyl formate, alkyl benzoate and alkanol being formed as the major products. Absence of cyclised products in experiments with substrates containing hex-5-enyl, pent-4-enyloxy etc. units demonstrates that radical production must be minor and that N-alkoxycarbonylazacyclohexadienyl radicals do not readily undergo β-scission of the exocyclic N–C bond. The most probable mechanism is a direct 1,2-elimination of formate. The alcohols which accompanied the other products are probably formed by hydrolysis of the formates and benzoates. Analogous chemistry is displayed by N-alkoxycarbonyl-1,4-dihydropyridines at higher temperatures where 1,4-elimination of formate is too rapid for homolytic radical production to compete.


References

  1. G. Binmore, J. C. Walton and L. Cardellini, J. Chem. Soc., Chem. Commun., 1995, 27 RSC.
  2. G. Binmore, L. Cardellini and J. C. Walton, J. Chem. Soc., Perkin Trans. 2, 1997, 757 RSC.
  3. F. W. Fowler, J. Org. Chem., 1972, 37, 1321 CrossRef.
  4. F. Backenstrass, J. Streith and T. Tschamber, Tetrahedron Lett., 1990, 31, 2139 CrossRef CAS.
  5. P. A. Wender, J. M. Schaus and A. W. White, Heterocycles, 1987, 25, 263 CAS.
  6. J. Kenyon, H. Philips and V. P. Pittmann, J. Chem. Soc., 1935, 1072 RSC.
  7. J. Heinzer, Quantum Chemistry Program Exchange, University of Indiana, Bloomington, IN, 1972, No. 209 Search PubMed.
  8. A. Berndt, in Landolt-Börnstein, Magnetic Properties of Free Radicals, ed. H. Fischer, Springer-Verlag, Berlin, 1977, vol. II 9b, p. 509; 1987, vol. II 17c, p. 127 Search PubMed.
  9. H. Zeldes and R. Livingston, J. Phys. Chem., 1972, 76, 3348 CrossRef CAS.
  10. K. Akiyama, T. Ishii, S. Tero-Kubota and Y. Ikagami, Bull. Chem. Soc. Jpn., 1985, 58, 3335.
  11. B. Schroeder, W. P. Neumann, J. Hollaender and H.-P. Becker, Angew. Chem., 1972, 84, 894.
  12. J. Pfenninger, C. Heuberger and W. Graf, Helv. Chim. Acta, 1980, 63, 2328 CrossRef CAS.
  13. A. L. J. Beckwith and V. W. Bowry, J. Am. Chem. Soc., 1994, 116, 2710 CrossRef CAS.
  14. S. Hemamalini and R. Scheffold, Helv. Chim. Acta, 1995, 78, 447 CAS.
  15. M. D. Bachi and E. Bosch, J. Org. Chem., 1992, 57, 4696 CrossRef CAS.
  16. H. Togo, M. Aoki and M. Yokoyama, Chem. Lett., 1991, 1691 CAS.
  17. J. Hartung and F. Gallou, J. Org. Chem., 1995, 60, 6706 CrossRef CAS.
  18. P. A. Baguley and J. C. Walton, submitted for publication in J. Chem. Soc., Perkin Trans. 1 Search PubMed.
  19. J. Lusztyk, E. Lusztyk, B. Maillard, L. Lunazzi and K. U. Ingold, J. Am. Chem. Soc., 1983, 105, 4475 CrossRef CAS.
  20. J. Lusztyk, E. Lusztyk, B. Maillard and K. U. Ingold, J. Am. Chem. Soc., 1984, 106, 2923 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.