Further insight via15N NMR spectroscopy into the reactive intermediates formed by superacid protonation of crowded nitro-PAHs: persistent dihydroxyiminiumpyrenium and hydroxyiminiumpyrenium dications

(Note: The full text of this document is currently only available in the PDF Version )

Kenneth K. Laali and Poul Erik Hansen


Abstract

Low temperature protonation of 1-nitropyrene and its 15N-labelled isotopomer with FSO3H·SbF5 (1∶1) (‘magic acid’)–SO2ClF (or SO2) or with FSO3H·SbF5 (4∶1)–SO2ClF generates either the dihydroxyiminiumpyrenium dication (NO2 diprotonation) or the hydroxyiminiumpyrenium dication as the principle NMR observable persistent species (depending on the sample concentration, reaction time and the superacid). The latter is independently generated by diprotonation of authentic 1-nitrosopyrene. Variable formation of dihydroxyiminiumpyrenium and hydroxyiminiumpyrenium dications is also observed in the protonation of sterically crowded 1-nitro-2,7-di-tert-butylpyrene, which gives the corresponding dihydroxyiminiumpyrenium dication in FSO3H·SbF5 (1∶1)–SO2ClF (or SO2) and the hydroxyiminiumpyrenium dication by low temperature reaction with FSO3H·SO2ClF or CF3SO3H·SO2. Protonation of the buttressed 1-nitro-2,4,6,8,10-pentaisopropylpyrene and its 15N-labelled isotopomer produces the dihydroxyiminiumpyrenium dication (no NMR evidence for the formation of the hydroxyiminiumpyrenium dication) which, as shown before (J. Chem. Soc., Perkin Trans. 2, 1995, 537), undergoes a facile cyclization to the oxazoline-fused pyrenium cation for which 15N NMR data are now presented. Diprotonation and subsequent cyclization of the singly 15N-labelled 1,3-dinitro-2,4,6,8,10-pentaisopropylpyrene are also studied. Whereas our work reaffirms the generality of NO2 diprotonation in nitropyrenes, it focuses attention on an additional pathway leading to [double bond, length half m-dash]NH(OH) dication formation.

PM3 calculations are used as a complementary tool to examine the geometries and energies of the resulting dications.


References

  1. P. Upadhaya, L. S. von Tunglen, P. P. Fu and K. El-Bayoumy, Chem. Res. Toxicol., 1994, 7, 690 CrossRef.
  2. B. P. Cho, Org. Prep. Proced. Int., 1995, 27, 243 CAS.
  3. K. Fukuhara, M. Takei, H. Kageyama and N. Miyata, Chem. Res. Toxicol, 1995, 8, 47 CrossRef CAS.
  4. D. Herrerno-Saez, F. E. Evans and P. P. Fu, Chem. Res. Toxicol., 1994, 7, 806 CrossRef.
  5. W. A. Vance and R. Chan, Environ. Mutagen., 1983, 5, 859 Search PubMed.
  6. P. P. Fu, Y.-C. Ni, Y.-M. Zhang, R. H. Heflich, Y.-X. Wang and J.-S. Lai, Mutat. Res., 1989, 225, 121 CrossRef CAS.
  7. S.-T. Lin, Y.-F. Jih and P. P. Fu, J. Org. Chem., 1996, 61, 5271 CrossRef CAS.
  8. B. P. Cho, M. Kim and R. G. Harvey, J. Org. Chem., 1993, 58, 5788 CrossRef CAS.
  9. A. M. van den Braken van Leersum, J. Cornelisse and J. Lugtenburg, Tetrahedron Lett., 1985, 4823 CrossRef CAS.
  10. Y.-S. Yu, J.-S. Lai and P. P. Fu, J. Org. Chem., 1993, 58, 7283 CrossRef.
  11. K. Fukhari, M. Takei, H. Kageyama and N. Miyata, Chem. Res. Toxicol., 1994, 7, 357.
  12. F. E. Evans, J. Deck and P. C. Howard, Chem. Res. Toxicol., 1994, 7, 357.
  13. A. M. Dietrich, C. R. Guenat and L. M. Ball, Abstracts of 35th ASMS conference on Mass Spectrometry and Allied Topics, Denver, CO, May 1987 Search PubMed.
  14. Review: K. K. Laali, Chem. Rev., 1996, 96, 1873 Search PubMed.
  15. K. K. Laali, S. Hollenstein, R. G. Harvey and P. E. Hansen, J. Org. Chem., 1997, 62, 5804 CrossRef CAS.
  16. K. K. Laali and P. E. Hansen, J. Org. Chem., 1997, 62, 5804 CrossRef CAS.
  17. K. K. Laali, M. Tanaka, S. Hollenstein and M. Cheng, J. Org. Chem., 1997, 62, 7752 CrossRef CAS.
  18. K. K. Laali, S. Hollenstein and P. E. Hansen, J. Chem. Soc., Perkin Trans. 2, 1997, 2207 RSC.
  19. K. K. Laali, S. Bolvig and P. E. Hansen, J. Chem. Soc., Perkin Trans. 2, 1995, 537 RSC.
  20. K. K. Laali, T.-M. Liang and P. E. Hansen, J. Org. Chem., 1992, 57, 2658 CrossRef CAS.
  21. J. V. Bullen, J. H. Ridd and O. Sabek, Gazz. Chim. Ital., 1990, 120, 291 CAS.
  22. J. V. Bullen and J. H. Ridd, J. Chem. Soc., Perkin Trans. 2, 1990, 1681 RSC.
  23. R. P. Austin and J. H. Ridd, J. Chem. Soc., Perkin Trans. 2, 1994, 1411 RSC.
  24. R. P. Austin and J. H. Ridd, J. Chem. Soc., Perkin Trans. 2, 1993, 1229 RSC.
  25. G. A. Olah and D. J. Donovan, J. Org. Chem., 1978, 43, 1743 CrossRef CAS.
  26. S. Berger, S. Braun and H.-O. Kalinowski, 15N NMR Spectroscopie, Thieme Verlag, Stuttgart, 1992, vol. 2 Search PubMed.
  27. D. J. Craik, G. C. Levery and R. T. C. Brownlee, J. Org. Chem., 1983, 48, 1601 CrossRef CAS.
  28. G. J. Martin, M. L. Martin and J.-P. Gouesnard, 15N NMR Spectroscopy, in NMR Basic Principles and Progress, ed. P. Diehl, E. Fluck and R. Kosfeld, 1981 Search PubMed.
  29. T. Ohta, K. Shudo and T. Okomoto, Tetrahedron Lett., 1984, 25, 325 CrossRef CAS.
  30. Nitrogen NMR, ed. M. Witanowski and G. A. Webb, Plenum, London, 1973 Search PubMed.
  31. I. Yavari, R. E. Botto and J. D. Roberts, J. Org. Chem., 1978, 43, 2542 CrossRef CAS.
  32. G. C. Levy and R. L. Lichter, Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy, Wiley Interscience, New York, 1979 Search PubMed.
  33. (a) K. K. Laali and D. S. Nagvekar, J. Org. Chem., 1991, 56, 1867 CrossRef CAS; (b) K. K. Laali and J. J. Houser, J. Phys. Org. Chem., 1992, 5, 244 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.