A three-dimensional receptor model for isovanillic sweet derivatives

(Note: The full text of this document is currently only available in the PDF Version )

Angela Bassoli, Lucio Merlini, Gabriella Morini and Angelo Vedani


Abstract

Using pseudoreceptor modelling, we have derived a three-dimensional binding-site model for the structurally uncharacterised sweet-taste receptor. The receptor model was derived based on 17 sweet compounds of the isovanillyl class (4-methoxy-3-hydroxybenzyl) as the training set and consists of nine key amino-acid residues embedded in a hydrophobic receptor cavity. The underlying technology (software PrGen) allows for a dynamical treatment of the ligand–receptor complex (ligand equilibration and Monte-Carlo scanning of receptor space) as well as for receptor-mediated ligand alignment. Free energies of ligand binding are estimated based on ligand–receptor interactions, ligand desolvation energy, change of ligand internal energy and change of ligand entropy upon receptor binding.

The validity of the receptor model has been assessed by using a test set of eight isovanillyl sweet compounds different from the training set. For these ligands, the obtained binding-site surrogate is capable of predicting free energies of ligand binding, ΔG[hair space]°, to within 0.99 kcal mol–1 (rms) of their experimental value, corresponding to an uncertainty in the sweetness of a factor of 5.5. Maximal individual errors of predicted sweetnesses do not exceed a factor of 18.


References

  1. J. W. Ellis, J. Chem. Educ., 1995, 8, 671; S. S. Schiffman and C. A. Gatlin, Neurosci. Biobehav. Rev., 1993, 17, 313 CAS.
  2. G. D. Laing and A. Jinks, Trends Food Sci. Technol., 1996, 7, 420 CrossRef; T. A. Gilbertson and S. C. Kinnamon, Chem. Biol., 1996, 3, 233 CAS; S. S. Schiffman, in Sugars in nutrition, eds. M. Gracey, N. Kretchmer and E. Rossi, Nestlé Nutrition Workshop Series, Raven Press, New York, 1991, vol. 25, pp. 55–67 Search PubMed.
  3. R. S. Shallenberger and T. E. Acree, Nature, 1967, 216, 480 CAS.
  4. L. B. Kier, J. Pharm. Sci., 1972, 61, 1394 CAS.
  5. C. K. Lee, in Advances in carbohydrate chemistry and biochemistry, eds. R. S. Tipson and D. Horton, Academic Press, London, 1987, vol. 45, pp. 199–351 Search PubMed.
  6. M. A. Castiglione Morelli, F. Lelj, F. Naider, M. Tallon, T. Tancredi and P. A. Temussi, J. Med. Chem., 1990, 33, 514 CrossRef.
  7. T. Yamazaki, E. Benedetti, D. Kent and M. Goodman, Angew. Chem., Int. Ed. Engl., 1994, 33, 1437 CrossRef.
  8. C. Nofre and J. M. Tinti, in Sweet taste chemoreception, eds. M. Mathlouthi, J. A. Kanters and G. G. Birch, Elsevier, London, 1993, pp. 205–236 Search PubMed.
  9. A. Arnoldi, A. Bassoli, G. Borgonovo and L. Merlini, J. Chem. Soc., Perkin Trans. 1, 1995, 2447 RSC.
  10. A. Arnoldi, A. Bassoli and L. Merlini, Food Chem., 1996, 3, 247 CrossRef.
  11. A. Arnoldi, A. Bassoli, G. Borgonovo, L. Merlini and G. Morini, J. Agr. Food Chem., 1997, 45, 2047 CrossRef CAS.
  12. C. Nofre, J. M. Tinti and D. Glaser, Chem. Senses, 1996, 21, 747 Search PubMed.
  13. T. Suami and L. Hough, J. Carbohydr. Chem., 1994, 13, 1079 CAS.
  14. L. W. Guttad, L. Shan, J. M. Anchin, D. S. Linthicum and A. B. Edmuson, J. Mol. Biol., 1994, 236, 247 CrossRef CAS.
  15. Y. Asahina and J. Asano, Chem. Ber., 1929, 62, 171 Search PubMed.
  16. R. M. Horovitz and B. Gentili, J. Agric. Food. Chem., 1969, 17, 696.
  17. A. Arnoldi, A. Bassoli, L. Merlini and E. Ragg, J. Chem. Soc., Perkin Trans. 1, 1993, 1359 RSC.
  18. A. Arnoldi, A. Bassoli, L. Merlini and E. Ragg, J. Chem. Soc., Perkin Trans. 2, 1991, 1399 RSC.
  19. R. Zehnter and H. Gerlach, Tetrahedron Asymm., 1996, 6, 2779 CrossRef CAS.
  20. A. Vedani, P. Zbinden, J. P. Snyder and P. A. Greenidge, J. Am. Chem. Soc., 1995, 117, 4987 CrossRef CAS.
  21. J. P. Snyder, S. N. Rao, K. F. Koehler and A. Vedani, in 3D QSAR in Drug Design, ed. H. Kubinyi, ESCOM Science Publishers, Leiden, 1993, pp. 336–354 Search PubMed.
  22. P. Zbinden, M. Dobler, G. Folkers and A. Vedani, Quant. Struct.-Act. Relat., 1998, 17, 122 Search PubMed.
  23. N. L. Allinger, J. Am. Chem. Soc., 1977, 99, 8127 CrossRef CAS.
  24. F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson and W. C. Still, J. Comput. Chem., 1990, 11, 440 CrossRef CAS.
  25. J. J. P. Stewart, J. Comput. Aided Mol. Des., 1990, 4, 1 CrossRef CAS.
  26. W. C. Still, A. Tempczyk, R. C. Hawley and T. Hendrickson, J. Am. Chem. Soc., 1990, 112, 6127 CrossRef CAS.
  27. J. M. Blaney, P. K. Weiner, A. Dearing, P. A. Kollman, E. C. Jorgensen, S. J. Oatley, J. M. Burridge and J. F. Blake, J. Am. Chem. Soc., 1984, 104, 6424.
  28. M. S. Searle and D. H. Williams, J. Am. Chem. Soc., 1992, 114, 10 690 CrossRef CAS.
  29. A. Vedani and D. W. Huhta, J. Am. Chem. Soc., 1990, 112, 4759 CrossRef CAS.
  30. E. Marengo and R. Todeschini, Chemom. Intell. Lab. Sys., 1992, 16, 37 CrossRef CAS.
  31. W. E. Dick and J. E. Hodge, J. Agric. Food. Chem., 1978, 26, 723 CrossRef CAS.
  32. N. P. D. Nanayakkara, R. A. Hussain, J. M. Pezzuto, D. D. Soejarto and A. D. Kinghorn, J. Med. Chem., 1988, 31, 1250 CrossRef CAS.
  33. M. Yamato, K. Hashigaki, J. Uenishi, I. Yamakawa, N. Sato and T. Koyama, Chem. Pharm. Bull., 1975, 23, 3101 CAS.
  34. A. Arnoldi, A. Bassoli, R. Caputo, L. Merlini, G. Palumbo and S. Pedatella, J. Chem. Soc., Perkin Trans. 1, 1994, 1241 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.