Magnetic and electrochemical investigations on anions derived from oligoketones containing fluorenone and benzophenone units. An approach to the design of stable multiradical organic materials

(Note: The full text of this document is currently only available in the PDF Version )

Andreas Behrendt, Constantinos G. Screttas, Donald Bethell, Olav Schiemann and Barry R. Steele


Abstract

The mono- and poly-anions of some mono-, di- and tetra-ketones containing fluorenone and benzophenone moieties have been studied by NMR and cyclic voltammetry. Alkali metal anion radicals of fluorenone, generated by electron transfer from an alkali metal naphthalene radical anion exhibit markedly lower molar paramagnetic solvent shifts than those generated by direct reduction with an alkali metal. Evidence is provided for the involvement of hyperfine interactions between the naphthalene and the paramagnetic solute. The dianion of the diketone 9 is paramagnetic as are the dianions of the tetraketones 6 and 7. The NMR data, combined with those obtained by cyclic voltammetry, indicate that polyketones possessing fluorenone moieties connected through isophthaloyl ‘spacers’ are promising systems for the preparation of high-spin organics and electrophores.


References

  1. J. S. Miller and A. J. Epstein, Angew. Chemie, 1994, 106, 399 Search PubMed; Angew. Chemie Int. Ed. Engl., 1994, 33, 385 Search PubMed; M. Baumgarten and K. Müllen, Top. Curr. Chem., 1994, 169, 1 Search PubMed.
  2. Z. Hou, A. Fujita, H. Yamazaki and Y. Wakatsuki, J. Am. Chem. Soc., 1996, 118, 2503 CrossRef CAS; Z. Hou, T. Miyano, H. Yamazaki and Y. Wakatsuki, J. Am. Chem. Soc., 1995, 117, 4421 CrossRef CAS.
  3. N. Hirota and S. I. Weissman, Mol. Phys., 1962, 5, 537 CAS; N. Hirota, J. Am. Chem. Soc, 1967, 89, 32 CrossRef CAS.
  4. W. T. Borden and E. R. Davidson, Acc. Chem. Res., 1981, 14, 69 CrossRef CAS; W. T. Borden, Mol. Cryst. Liq. Cryst., 1993, 232, 195 Search PubMed.
  5. K. Müllen, Pure Appl. Chem., 1993, 65, 89; U. Müller, M. Adam and K. Müllen, Chem. Ber., 1994, 127, 437; H. Naarmann, Angew. Makromol. Chem., 1982, 109/110, 295 CrossRef.
  6. C. G. Screttas and M. Micha-Screttas, J. Org. Chem., 1981, 46, 993 CrossRef CAS.
  7. C. G. Screttas and M. Micha-Screttas, J. Org. Chem., 1983, 48, 153 CrossRef CAS.
  8. R. G. Lawler and C. T. Tabit, J. Am. Chem. Soc., 1969, 91, 5671 CrossRef CAS.
  9. The ionization potentials (EI) of normal alkyl radicals from ethyl to pentyl are connected to the respective carbon numbers nc through the relation EI(n-R)=–0.169nc+ 8.679. By extrapolation we obtain an estimate for the EI of the n-C11H23 equal to ca. 6.8 eV, which is close to that of the tert-butyl radical, 6.7 eV. For the EI(R)s as substituent constants see C. G. Screttas and G. A. Heropoulos, J. Org. Chem., 1993, 58, 1794 Search PubMed and references therein.
  10. C. G. Screttas and M. Micha-Screttas, J. Am. Chem. Soc., 1987, 109, 7573 CrossRef CAS.
  11. The reported molar paramagnetic solvents shifts of alkali metal fluorenone radical anions determined by a continuous wave instrument at 36 °C (ref. 6), can be converted to those measured by an NMR instrument in which the effective magnetic field is parallel to the long axis of the sample, at 27 °C, by the formula: (δM)sc= 2 (δM)cw[(309)/(300)].
  12. C. G. Screttas, G. A. Heropoulos, B. R. Steele and D. Bethell, Magn. Reson. Chem., in the press Search PubMed.
  13. J. Owen and J. H. M. Thornley, Rep. Prog. Phys., 1966, 29, 675 CrossRef CAS.
  14. See e.g., E. L. Mackor, A. Hofstra and J. H. van der Waals, Trans. Faraday Soc., 1958, 54, 66 Search PubMed.
  15. J. C. Evans, C. C. Rowlands, B. J. Herold and J. M. A. Empis, J. Chem. Soc., Perkin Trans. 2, 1984, 389 RSC.
  16. A. Kuboyama, Bull. Chem. Soc. Jpn., 1964, 37, 1540 CAS.
  17. W. Deuschel, Helv. Chim. Acta, 1951, 34, 168 CAS; ibid., 1951, 34, 2403 Search PubMed; F. Abel and W. Deuschel, Chem. Ber., 1956, 89, 2794 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.