Investigations on the dynamic properties of 25,26,27,28-tetraalkoxycalix[4]arenes: para-substituent- and solvent-dependent properties of paco conformers and determination of thermodynamic parameters of the pinched cone/pinched cone conversion

(Note: The full text of this document is currently only available in the PDF Version )

Antonio Soi, Walter Bauer, Harald Mauser, Claus Moll, Frank Hampel and Andreas Hirsch


Abstract

The conformational and dynamic behaviour of the 25,26,27,28-tetraalkoxycalix[4]arenes 1–7 (R = methyl, propyl) has been investigated by X-ray crystallography, dynamic 1D and 2D NMR spectroscopy, as well as with a series of force field (PIMM) and semiempirical (PM3, MNDO) calculations. The stereo-electronic effects of the upper rim substituents of tetramethoxycalix[4]arenes characteristically influence the preferred arrangement of the phenyl rings in the paco conformation. The in/out isomerisation (0001≈AAAA[hair space][hair space]0001≈AAAB) taking place in 4 is strongly hindered in 1 due to the smaller diameter of the upper rim. The ease of rotation of the methoxy group attached to the inverted ring in paco-4 can be altered by using a solvent (CD2Cl2), which is able to form a host–guest complex with the calixarene cavity. For 1–3 cone/paco and paco/paco equilibria have been observed by 2D EXSY spectroscopy. Gibbs activation energies for the cone(C2v)/cone(C2v) conversion were determined for 1, 2, 5 and 6. An NMR line shape analysis provided Arrhenius and Eyring activation parameters for the cone(C2v)/cone(C2v) conversion in 5 and 6.


References

  1. C. D. Gutsche, Calixarenes, The Royal Society of Chemistry, Cambridge, UK, 1989 Search PubMed.
  2. Calixarenes, A Versatile Class of Macrocyclic Compounds, ed. J. Vicens and V. Böhmer, Kluwer, Dordrecht, 1991 Search PubMed.
  3. V. Böhmer, Angew. Chem., 1995, 107, 785 CrossRef.
  4. S. Shinkai, Tetrahedron, 1993, 49, 8933 CrossRef CAS.
  5. K. Iwamoto, K. Araki and S. Shinkai, J. Org. Chem., 1991, 56, 4955 CrossRef CAS.
  6. E. Ghidini, F. Ugozzoli, R. Ungaro, S. Harkema, A. A. El-Fadl and D. N. Reinhoudt, J. Am. Chem. Soc., 1990, 112, 6979 CrossRef CAS.
  7. C. D. Gutsche, B. Dhawan, A. J. Levine, K. H. No and L. J. Bauer, Tetrahedron, 1983, 39, 409 CrossRef CAS.
  8. T. Harada, J. M. Rudzinski and S. Shinkai, J. Chem. Soc., Perkin Trans. 2, 1992, 2109 RSC.
  9. L. C. Groenen, J. D. van Loon, W. Verboom, S. Harkema, A. Casnati, R. Ungaro, A. Pochini, F. Ugozzoli and D. N. Reinhoudt, J. Am. Chem. Soc., 1991, 113, 2385 CrossRef CAS.
  10. S. Fischer, P. D. J. Grootenhuis, L. C. Groenen, W. P. van Hoorn, F. C. J. M. van Veggel, D. N. Reinhoudt and M. Karplus, J. Am. Chem. Soc., 1995, 117, 1611 CrossRef CAS.
  11. W. P. van Hoorn, Conformational and Dynamical Properties of Calixarenes, Proefschrift, University of Twente, 1997, and references cited therein Search PubMed.
  12. J. C. van Loon, L. C. Groenen, S. S. Wijmenga, W. Verboom and D. N. Reinhoudt, J. Am. Chem. Soc., 1991, 113, 2378 CrossRef CAS.
  13. J. Blixt and C. Detellier, J. Am. Chem. Soc., 1994, 116, 11 957 CrossRef CAS.
  14. P. D. J. Grootenhuis, P. A. Kollman, L. C. Groenen, D. N. Reinhoudt, G. J. van Hummel, F. Ugozzoli and G. Andreetti, J. Am. Chem. Soc., 1990, 112, 4165 CrossRef.
  15. A. Arduini, M. Fabbi, M. Mantovani, L. Mirone, A. Pochini, A. Secchi and R. Ungaro, J. Org. Chem., 1995, 60, 1454 CrossRef CAS.
  16. M. Conner, V. Janout and S. L. Regen, J. Am. Chem. Soc., 1991, 113, 9670 CrossRef CAS.
  17. A. Ikeda, H. Tsuzuki and S. Shinkai, J. Chem. Soc., Perkin Trans. 2, 1994, 2073 RSC.
  18. For our semiempirical calculations we used the VAMP program package: G. Rauhut, A. Alex, J. Chandrasekhar, T. Steinke, W. Sauer, B. Beck, M. Hutter, P. Gedeck and T. Clark, VAMP7.0, Oxford Molecular Ltd., Madawar Centre, Oxford Science Park, Standford-on-Thames, Oxford, OX4 4GA, UK, 1996 (a) MNDO: J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 1977, 99, 4899 Search PubMed; (b) PM3: J. J. Stewart, J. Comput. Chem., 1989, 10, 209;221 Search PubMed.
  19. PIMM: H. J. Lindner, Tetrahedron, 1972, 30, 1127 Search PubMed; A. E. Smith and H. J. Lindner, J. Comput.-Aided Mol. Des., 1991, 5, 235 CrossRef CAS; M. Kroeker, PhD Thesis, Technische Hochschule, Darmstadt, 1994.
  20. Notation introduced by Reinhoudt and co-workers.10 The numbers denote the anisole units whereby 0 accounts for a non inverted anisole ring and 1 accounts for an inverted one. The letters A and B mark the position of the methoxy group attached to the corresponding benzene ring. A denotes a methoxy group pointing outward and B denotes a methoxy group pointing nward the cavity.
  21. F. A. Bovey, Nuclear Magnetic Resonance Spectroscopy, Academic Press, New York and London, 1969, pp. 61–71, 264–274 Search PubMed.
  22. We used the PM3 structure as a model because its higher symmetry facilitates such qualitative geometrical considerations.
  23. Values taken from ref. 11.
  24. For the equilibrium (2)ΔH=–9.8 kcal mol–1was calculated.11.
  25. I. Thondorf, J. Brenn, W. Brandt and V. Böhmer, Tetrahedron Lett., 1995, 36, 6665 CrossRef CAS.
  26. G. D. Andreetti, V. Böhmer, J. G. Jordan, M. Tabatabai, F. Ugozzoli, W. Vogt and A. Wolff, J. Org. Chem., 1993, 58, 4023 CrossRef CAS.
  27. J. Scheerder, R. H. Vreekamp, J. F. J. Engbersen, W. Verboom, J. P. M. van Duynhoven and D. N. Reinhoudt, J. Org. Chem., 1996, 61, 3476 CrossRef CAS.
  28. For the 25,26,27,28-tetraoctyloxycalix[4]arene Arduini et al.15 found ΔG= 10.2 kcal mol–1. The introduction of four COOH or four CONH2 groups in the upper rim increases ΔG due to intramolecular H-bonding to 14.1 and 13.3 kcal mol–1 respectively.16 Böhmer and co-workers26 reported a ΔG of 13.3 kcal mol–1 for the C2/C2 interconversion in a dissymetric calix[4]arene.
  29. This value is similar to the ΔS of –3.8 cal mol–1 K–1 for the paco-4/cone-4 conversion determined by Blixt and Detellier,13 and should be compared with ΔS=–R ln 4 =–2.8 cal mol–1 K–1 accounting for the changes in the symmetry numbers of those species.
  30. Obviously the PM3 method is inappropriate to quantitatively reproduce the experimental results. However it has to be considered that 0 K structures in the gas phase neglecting all solvent interactions are considered. Better agreement with experimental results was achieved with force field calculations.10,11.
  31. This value is comparable with ΔS=–16.7 cal mol–1 K–1 for the 4-paco/4-1,2-alt conversion.13.
  32. C. D. Gutsche and P. F. Pagoria, J. Org. Chem., 1985, 50, 5795 CrossRef CAS.
  33. W. Verboom, A. Durie, R. J. M. Egberink, Z. Asfari and D. N. Reinhoudt, J. Org. Chem., 1992, 57, 1313 CrossRef CAS.
  34. R. A. Jakobi, V. Böhmer, C. Grüttner, D. Kraft and W. Vogt, New J. Chem., 1996, 20, 493 Search PubMed.
  35. I. Bitter, A. Grün, B. Ágai and L. Tôke, Tetrahedron, 1995, 51, 7835 CrossRef CAS.
  36. H. Günther, NMR-Spektroskopie, Georg Thieme Verlag, Stuttgart, New York, ch. 9, 1992 Search PubMed.
  37. J. Baker, J. Comput. Chem., 1986, 7, 385 CrossRef CAS.
  38. G. Rauhut and T. Clark, J. Comput. Chem., 1993, 14, 503 CrossRef CAS.
  39. TRAMP 1.1b, H. Lanig, R. Koenig and T. Clark, Erlangen, 1995.
  40. B. A. Murtagh and R. W. H. Sargent, Comput. J., 1970, 13, 185 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.