Carboxy(vinyl)ketene intermediates in the thermolysis of methylthio- and methoxy-substituted Meldrum’s acid derivatives

(Note: The full text of this document is currently only available in the PDF Version )

Hervé Bibas, C. Oliver Kappe, Ming Wah Wong and Curt Wentrup


Abstract

Methylthio- and methoxy-substituted carboxy(vinyl)ketenes 10 and 16a have been identified by Ar matrix isolation FTIR spectroscopy following flash vacuum thermolysis (FVT) of Meldrum’s acid derivatives 7 and 13a. Methylthio(methyl)methyleneketene 9 and alkoxy(methyl)methyleneketene 15 are formed concurrently at high FVT temperatures. The alkoxy(methyl)methyleneketenes 15 do not isomerise to alkoxy(vinyl)ketenes 18, which have been generated and identified in other reactions. Ethoxy(methyl)methyleneketene 15b readily eliminates ethene in a retro-ene type reaction to produce acetylketene 22. Ketenes 15 react with alcohols and amines to produce 3-alkoxybutenoic acid derivatives 21.


References

  1. (a) G. Gross, C. Wentrup, H.-M. Berstermann and P. Lorencak, J. Org. Chem., 1985, 50, 2877 CrossRef CAS; (b) S. Mohmand, T. Hirabayashi and H. Bock, Chem. Ber., 1981, 114, 2609 CrossRef CAS.
  2. C. Wentrup and P. Lorencak, J. Am. Chem. Soc., 1988, 110, 1880 CrossRef CAS.
  3. Review of α-oxoketones: C. Wentrup, W. Heilmayer and G. Kollenz, Synthesis, 1994, 1219 Search PubMed.
  4. (a) A. Ben Cheik, J. Chuche, N. Manisse, J. C. Pommelet, K.-P. Netsch, P. Lorencak and C. Wentrup, J. Org. Chem., 1991, 56, 970 CrossRef CAS; (b) F. Chuburu, S. Lacombe, G. Pfister-Guillouzo and C. Wentrup, New J. Chem., 1994, 18, 879 Search PubMed.
  5. (a) P. Lorencak, J. C. Pommelet, J. Chuche and C. Wentrup, J. Chem. Soc., Chem. Commun., 1986, 369 RSC; (b) C. Wentrup, P. Kambouris, R. A. Evans, D. Owen, G. Macfarlane, J. Chuche, J. C. Pommelet, A. Ben Cheikh, M. Plisnier and R. Flammang, J. Am. Chem. Soc., 1991, 113, 3130 CrossRef CAS.
  6. A. Ben Cheikh, H. Dhimane, J. C. Pommelet and J. Chuche, Tetrahedron Lett., 1988, 29, 5919 CrossRef CAS.
  7. F. Chuburu, S. Lacombe, G. Pfister-Guillouzo, A. Ben Cheikh, J. Chuche and J. C. Pommelet, J. Am. Chem. Soc., 1991, 113, 1954 CrossRef CAS.
  8. F. Chuburu, S. Lacombe and G. Pfister-Guillouzo, J. Org. Chem., 1991, 56, 3447 CrossRef.
  9. X. Huang and B.-C. Chen, Synthesis, 1987, 480 CrossRef CAS.
  10. (a) C. V. Berney, J. Chem. Phys., 1970, 53, 1713 CrossRef CAS; (b) D. E. Milligan and M. E. Jacox, J. Chem. Phys., 1971, 54, 927 CrossRef CAS.
  11. See for instance: (a) R. F. C. Brown, F. W. Eastwood and K. J. Harrington, Aust. J. Chem., 1974, 27, 2373 CAS; (b) R. F. C. Brown, F. W. Eastwood, N. R. Browne, K. J. Coulston, M. J. Irvine, A. D. E. Pullin and U. E. Wiersum, Aust. J. Chem., 1989, 42, 1321 CAS.
  12. G. A. Hunter and H. McNab, J. Chem. Soc., Chem. Commun., 1990, 375 RSC; G. A. Hunter and H. McNab, J. Chem. Soc., Perkin Trans. 1, 1995, 1209 RSC.
  13. Above 700 °C, two new bands were observed at 2121 and 2111 cm–1, increasing in intensity with the temperature. Further investigation will be needed in order to identify the carrier of these absorptions, which is not 18.
  14. (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev., 1988, B37, 785 Search PubMed.
  15. E. Taskinen and V.-M. Mukkala, Tetrahedron, 1982, 38, 613 CrossRef CAS.
  16. (a) Y. Chiang, H.-X. Guo, A. J. Kresge and O. S. Tee, J. Am. Chem. Soc., 1996, 118, 3386 CrossRef CAS; (b) J. Frey and Z. Rappoport, J. Am. Chem. Soc., 1996, 118, 5182 CrossRef CAS; (c) D. J. Graham, S. M. Hurst and J.-C. Luo, J. Phys. Chem., 1995, 99, 1115 CrossRef CAS; (d) M. T. Nguyen, D. Sengupta, G. Raspoet and L. G. Vanquickenborne, J. Phys. Chem., 1995, 99, 11 883 CrossRef CAS; (e) X. Duan and M. Page, J. Am. Chem. Soc., 1995, 117, 5114 CrossRef CAS.
  17. (a) H. Bibas, M. W. Wong and C. Wentrup, Chem. Eur. J., 1997, 3, 237 CrossRef CAS; (b) B. E. Fulloon, D. W. J. Moloney, H. Bibas, M. W. Wong and C. Wentrup, Pure Appl. Chem., 1996, 68, 891 CAS; (c) H. Bibas, M. W. Wong and C. Wentrup, J. Am. Chem. Soc., 1995, 117, 9583.
  18. H. Bibas, R. Koch and C. Wentrup, submitted for publication in J. Org. Chem Search PubMed.
  19. s-cis-Acetylketene: 3095, 2148, 2143, 1681, 1378, 1345, 1168 cm–1. s-trans-Acetylketene: 3083, 2137, 2133, 1699, 1343, 1221 cm–1.
  20. (a) C. O. Kappe, M. W. Wong and C. Wentrup, J. Org. Chem., 1995, 60, 1686 CrossRef CAS; (b) R. H. Zuhse, M. W. Wong and C. Wentrup, J. Phys. Chem., 1996, 100, 3917 CrossRef CAS.
  21. D. W. J. Moloney and C. Wentrup, J. Org. Chem., 1997, 62, 4240 CrossRef CAS.
  22. (a) M. W. Wong and C. Wentrup, unpublished results; (b) the G2(MP2,SVP) calculated relative energies of the ylides analogous to 12, formed by 1,4-H shifts in (MeX)CH[double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash]O are 173 (X = O), 96 (X = S) and 104 (X = NH) kJ mol–1 above those of the methyleneketenes.
  23. R. Flammang, D. Landu, S. Laurent, M. Barbieux-Flammang, C. O. Kappe, M. W. Wong and C. Wentrup, J. Am. Chem. Soc., 1994, 116, 2005 CrossRef CAS; R. Flammang, S. Laurent, M. Barbieux-Flammang and C. Wentrup, Org. Mass Spectrom., 1993, 28, 1161 CAS.
  24. M. W. Wong, Chem. Phys. Lett., 1996, 256, 391 CrossRef CAS.
  25. C. Wentrup, R. Blanch, H. Briehl and G. Gross, J. Am. Chem. Soc., 1988, 110, 1874 CrossRef CAS.
  26. G. A. Bihlmayer, G. Derflinger, J. Derkosch and O. E. Polansky, Monatsh. Chem., 1967, 98, 564 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.