Synthesis of metal complexes of 2,9-bis(2-hydroxyphenyl)-1,10-phenanthroline and their DNA binding and cleaving activities

(Note: The full text of this document is currently only available in the PDF Version )

Sylvain Routier, Valérie Joanny, Anne Zaparucha, Hervé Vezin, Jean-Pierre Catteau, Jean-Luc Bernier and Christian Bailly


Abstract

A series of metal complexes that combine the structure of phenanthroline and salen have been synthesized and characterized by electron paramagnetic resonance spectroscopy. The effects of the 2,9-bis(2-hydroxyphenyl)-1,10-phenanthroline compounds complexed with CuII, NiII, CoII or MnIII on the temperature-dependent helix-to-coil transition of DNA have been measured. The interaction with DNA is metal-dependent and the highest stabilization is observed with the Co complex. The DNA cleaving activities have been studied with plasmid DNA and/or with a 32P-labelled duplex oligonucleotide depending on the redox properties of the complexes. The Cu complex is inactive whereas the Co chelate efficiently cleaves DNA in the presence of a reducing agent. Cleavage of DNA by the Mn complex can occur either in the presence of a reducing agent via the production of oxygen radicals (which are detected by EPR spectroscopy) or in the presence of an oxidant such as KHSO5. In both cases, the cleavage of nucleic acids is very efficient whereas no cleavage is observed with the Ni complex. The complexes of bis(hydroxyphenyl)phenanthroline with Mn and Co complement the tool-box of reagents available for cleavage of DNA.


References

  1. R. Breslow, X. Zhang, R. Xu, M. Maletic and R. Merger, J. Am. Chem. Soc., 1996, 118, 11 678 CrossRef CAS.
  2. S. Routier, J.-L. Bernier, M. J. Waring, P. Colson, C. Houssier and C. Bailly, J. Org. Chem., 1996, 61, 2326 CrossRef CAS.
  3. S. Bhattacharya and S. S. Mandal, J. Chem. Soc., Chem. Commun., 1995, 2489 RSC.
  4. C. J. Burrows and S. E. Rokita, Acc. Chem. Res., 1994, 27, 295 CrossRef CAS.
  5. D. J. Gravert and J. H. Griffin, J. Org. Chem., 1993, 58, 820 CrossRef CAS.
  6. D. J. Gravert and J. H. Griffin, Inorg. Chem., 1996, 35, 4837 CrossRef CAS.
  7. J. G. Muller, X. Chen, A. C. Dadiz, S. E. Rokita and C. J. Burrows, J. Am. Chem. Soc., 1992, 114, 6407 CrossRef CAS.
  8. D. S. Sigman, A. Mazumder and D. M. Perrin, Chem. Rev., 1993, 93, 2295 CrossRef CAS.
  9. D. S. Sigman, Acc. Chem. Res., 1986, 19, 180 CrossRef CAS.
  10. F. Lam, K. S. Chan and B.-J. Liu, Tetrahedron Lett., 1995, 36, 6261 CrossRef CAS.
  11. U. Lüning and M. Müller, Chem. Ber., 1990, 123, 643.
  12. C. O. Dietrich-Bucheckerj, P. A. Marnot and J.-P. Sauvage, Tetrahedron Lett., 1982, 23, 5291 CrossRef CAS.
  13. S. Routier, J.-L. Bernier, J.-P. Catteau and C. Bailly, Bioorg. Med. Chem. Lett., 1997, 7, 63 CrossRef CAS.
  14. W. Whang and E. N. Jacobsen, J. Org. Chem., 1991, 56, 2296 CrossRef CAS.
  15. I. Sasaki, D. Pujol and A. Gaudemer, Inorg. Chim. Acta, 1987, 134, 53 CrossRef CAS.
  16. J. R. Pillrow, Transition for Electron Paramagnetic Resonance, Clarendon Press, Oxford, 1990 Search PubMed.
  17. Y. Sugiura, J. Am. Chem. Soc., 1980, 102, 5216 CrossRef CAS.
  18. B. M. Hoffman, D. L. Diemente and F. Basolo, J. Am. Chem. Soc., 1970, 32, 61 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.