Steric control of reactivity: formation of oximes, benzodiazepinone N-oxides and isoxazoloquinolinones

(Note: The full text of this document is currently only available in the PDF Version )

Frances Heaney, Sharon Bourke, Desmond Cunningham and Patrick McArdle


Abstract

Reaction of the alkenyl carbonyl compounds 1 with hydroxylamine can lead to the formation of the oximes 2, the benzodiazepinone N-oxides 3 or the isoxazoloquinolinones 5. The product(s) of reaction are shown to depend on the electronic nature of the terminal olefinic substituent R3 and the space filling capacity of the substituents R1, R2 and R4. When the olefinic centre is electron poor (R3 = CO2Et) ketocarbonyls convert exclusively to bicyclic nitrones 3 whereas aldehydes are more sensitive to subtle changes in skeletal structure and give rise to oximes 2, tricycles 5 or mixtures of both. For aldehyde and ketone substrates when the olefinic centre carries an aryl substituent (R3 = Ph) the primary product of reaction is the corresponding oxime which on thermal activation converts to the tricyclic isoxazoloquinolinones.


References

  1. S. Bourke and F. Heaney, Tetrahedron Lett., 1995, 36, 7527 CrossRef CAS.
  2. J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734 RSC.
  3. R. Grigg, J. Markandu, T. Perrior, S. Surendrakumar and W. J. Warnock, Tetrahedron, 1992, 48, 6929 CrossRef CAS.
  4. R. Grigg, F. Heaney, J. Markandu, S. Surendrakumar, M. Thornton-Pett and W. J. Warnock, Tetrahedron, 1991, 47, 4007 CrossRef CAS.
  5. C. M. Dicken and P. DeSong, J. Org. Chem., 1982, 47, 2047 CrossRef CAS; B. Baruah, D. Prajapati, A. Boruah and J. S. Sandhu, Syn. Commun., 1997, 27, 2563 Search PubMed.
  6. (a) P. G. Sammes and D. J. Weller, Synthesis, 1995, 1205 CrossRef CAS; (b) B. S. Orlek, P. G. Sammes and D. J. Weller, J. Chem. Soc., Chem. Commun., 1993, 1412 RSC.
  7. U. Eisner, J. A. Elvidge and R. P. Linstead, J. Chem. Soc., 1951, 1501 RSC.
  8. R. Scheffold and P. Dubs, Helv. Chim. Acta, 1967, 50, 798 CAS.
  9. Y. Masuoka, T. Asako, G. Goto and S. Noguchi, Chem. Pharm. Bull, 1986, 34, 140 CAS.
  10. M. Gotoh, T. Mizui, B. Sun, K. Hirayama and M. Nogouchi, J. Chem. Soc., Perkin Trans. 1, 1995, 1857 RSC; M. Gotoh, T. Mizui, B. Sun, K. Hirayama and M. Nogouchi, Tetrahedron, 1996, 887 CrossRef CAS.
  11. A. Arnone, L. Bruché, L. Garanti and G. Zecchi, J. Chem. Res. (S), 1995, 282 Search PubMed.
  12. C. O'Mahony and F. Heaney, Chem. Commun., 1996, 167 RSC; C. O'Mahony and F. Heaney, J. Chem. Soc., Perkin Trans. 1, 1998, 341 RSC and references therein.
  13. The alcohols 6a–c were obtained by LiAlH4 reduction of commercially available anthranilic acid, its 5-chloro or N-methyl derivative respectively; 6d–f were obtained by LiAlH4 reduction of their parent acids which were prepared according to the procedure described in the literature; C. F. Wilcox, Jr. and E. N. Farley, J. Am. Chem. Soc., 1984, 106, 7195 Search PubMed.
  14. G. Piancatelli, A. Scettri and M. D'Auria, Synthesis, 1982, 245 CrossRef CAS.
  15. G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467 CrossRef.
  16. G. M. Sheldrick, SHELXL-93 a computer program for crystal structure determination, University of Göttingen, 1993.
  17. P. McArdle, J. Appl. Crystallogr., 1995, 28, 65 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.