Cyclodextrin catalysis in the basic hydrolysis of alkyl nitrites

(Note: The full text of this document is currently only available in the PDF Version )

Emilia Iglesias and Aurora Fernández


Abstract

The influence of β-cyclodextrin (β-CD) on the hydrolysis reaction of a variety of structural types of alkyl nitrites (RONO) is studied in acid and in basic aqueous solutions. Acid-catalysed hydrolysis of alkyl nitrites is inhibited by the presence of β-cyclodextrin. The results are accounted for by assuming the formation of host–guest complexes between β-cyclodextrin and alkyl nitrite, which are unreactive or much less reactive than the uncomplexed RONO. We propose that the result is a consequence of the orientation of the alkyl nitrite in the cavity of CD. The degree of inhibition increases with the greater inclusion of the alkyl nitrite in the CD cavity. The kinetic data are quantitatively analyzed to afford the stability constants of the host–guest complexes. On the contrary, the presence of β-cyclodextrin strongly increases the rate of hydrolysis of alkyl nitrites in a basic medium, that is at a pH value higher than the pKa of β-cyclodextrin. This feature suggests the formation of a reactive complex between the alkyl nitrite and β-cyclodextrin, whose ionized CD hydroxy group promotes a nucleophilic attack in the rate-limiting step. This behaviour is consistent with a higher reactivity towards alkyl nitrites of an ionized CD hydroxy group as compared with the OH; the contrary occurs in the case of esters, whose cleavage by cyclodextrins in basic aqueous media has been studied extensively over the last several years.


References

  1. J. Szejtli, Cyclodextrin Technology, Kluwer, Dordrecht, Netherlands, 1988 Search PubMed.
  2. O. S. Tee, Adv. Phys. Org. Chem., 1994, 29, 1 CAS.
  3. D. Díaz, I. Vargas-Baca and J. García-Mora, J. Chem. Educ., 1994, 71, 708 CAS.
  4. (a) H.-R. Park, B. Mayer, P. Wolschann and G. Köhler, J. Phys. Chem., 1994, 98, 6158 CrossRef CAS; (b) C. A. Haskard, L. B. May, T. Kurucsev, S. F. Lincoln and C. J. Easton, J. Chem. Soc., Faraday Trans., 1997, 93, 279 RSC.
  5. S. Monti, G. Köhler and G. Grabner, J. Phys. Chem., 1993, 97, 13 011 CrossRef CAS.
  6. (a) O. S. Tee and T. A. Gadosy, J. Chem. Soc., Perkin Trans. 2, 1994, 2191 RSC; (b) O. S. Tee and T. A. Gadosy, J. Chem. Soc., Perkin Trans. 2, 1994, 715 RSC; (c) O. S. Tee and T. A. Gadosy, Can. J. Chem., 1996, 74, 745 CAS; (d) O. S. Tee and R. A. Donga, J. Chem. Soc., Perkin Trans. 2, 1996, 2763 RSC.
  7. D. M. Davies, G. A. Garner and J. R. Savage, J. Chem. Soc., Perkin Trans. 2, 1994, 2531 RSC.
  8. A. Granados and R. H. de Rossi, J. Am. Chem. Soc., 1995, 117, 3690 CrossRef CAS.
  9. M. Komiyama and M. L. Bender, J. Am. Chem. Soc., 1977, 99, 8021 CrossRef CAS.
  10. E. Iglesias, L. García-Río, J. R. Leis, M. E. Peña and D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2, 1992, 1673 RSC.
  11. L. García-Río, E. Iglesias, J. R. Leis and M. E. Peña, Langmuir, 1993, 9, 1263 CrossRef CAS.
  12. S. Oae, N. Asai and K. Fujimori, J. Chem. Soc., Perkin Trans. 2, 1978, 571 RSC.
  13. A. D. Allen, J. Chem. Soc., 1954, 1968 RSC.
  14. See, for example, N. S. Isaacs, Physical Organic Chemistry, Wiley, New York, 1987, p. 467 Search PubMed.
  15. S. Oae, N. Asai and K. Fujimori, J. Chem. Soc., Perkin Trans. 2, 1978, 1124 RSC.
  16. (a) J. Casado, A. Castro, F. M. Lorenzo and F. Meijide, Monatsh. Chem., 1986, 117, 335 CAS; (b) J. Casado, A. Castro, M. A. López-Quintela and F. M. Lorenzo-Barral, Bull. Soc. Chim. Fr., 1987, 401 CAS; (c) E. Calle, J. Casado, J. L. Cinos, F. J. García-Mateos and M. Tostado, J. Chem. Soc., Perkin Trans. 2, 1992, 987 RSC.
  17. L. García-Río, E. Iglesias, J. R. Leis, M. E. Peña and A. Rios, J. Chem. Soc., Perkin Trans. 2, 1993, 29 RSC.
  18. W. A. Noyes, Organic Syntheses, Wiley, New York, 1943; collect. vol. II Search PubMed.
  19. A. Domínguez, A. Fernández, E. Iglesias and L. Montenegro, J. Chem. Educ., 1997, 74, 1227 CrossRef CAS.
  20. (a) L. Peña, E. Junquera and E. Aicart, J. Solution Chem., 1995, 24, 1075 CAS; (b) E. Junquera, J. González-Benito, L. Peña and E. Aicart, J. Colloid Interface Sci., 1994, 163, 355 CrossRef CAS.
  21. E. Junquera, L. Peña and E. Aicart, Langmuir, 1995, 11, 4685 CrossRef CAS.
  22. J. Lin, F. Djedaïni-Pilard, P. Guenot and B. Perly, Supramolecular Chem., 1996, 7, 175 CAS.
  23. (a) O. S. Tee, M. Bozzi, J. J. Hoeven and T. A. Gadosy, J. Am. Chem. Soc., 1993, 115, 8990 CrossRef CAS; (b) O. S. Tee, M. Bozzi, N. Clement and T. A. Gadosy, J. Org. Chem., 1995, 60, 3509 CrossRef CAS.
  24. (a) P. García-Santos, E. Calle, S. González-Mancebo and J. Casado, Monatsh. Chem., 1996, 127, 997; (b) E. Calle, J. Casado, J. L. Cinos, F. J. García-Mateos and M. Tostado, J. Chem. Soc., Perkin Trans. 2, 1992, 987 RSC.
  25. S. Hamai, Bull. Chem. Soc. Jpn., 1996, 69, 543 CAS.
  26. (a) A. J. Kirby, Angew. Chem., Int. Ed. Engl., 1996, 35, 707 CrossRef CAS; (b) A. J. Kirby, Adv. Phys. Org. Chem., 1980, 17, 183 CAS.
  27. (a) A. M. Sánchez and R. H. de Rossi, J. Org. Chem., 1996, 61, 3446 CrossRef CAS; (b) K. Tawara, Ber. Bunsen-Ges. Phys. Chem., 1993, 97, 3446.
  28. D. L. H. Williams, Nitrosation, Cambridge University Press, Cambridge, 1988, p. 167 Search PubMed.
  29. A. Fernández, E. Iglesias, L. García-Río and J. R. Leis, Langmuir, 1995, 11, 1917 CrossRef CAS.
  30. O. S. Tee, T. A. Gadosy and J. B. Giorgi, Can. J. Chem., 1996, 74, 736 CAS From the results given in this paper for Ks of cyclopentyl- and cyclohexylamine, we calculated the variation-factor between a five- and six-membered ring; then we calculated the Ks of pyrrolidine from the Ks of piperidine by applying the variation-factor.
Click here to see how this site uses Cookies. View our privacy policy here.