Properties of tetramethyleneethane (TME) as revealed by ion chemistry and ion photoelectron spectroscopy

(Note: The full text of this document is currently only available in the PDF Version )

Eileen P. Clifford, Paul G. Wenthold, W. Carl Lineberger, G. Barney Ellison, Cun X. Wang, Joseph J. Grabowski, Fernando Vila and Kenneth D. Jordan


Abstract

The negative ion chemistry and photoelectron spectra of [CH2[double bond, length half m-dash]C(CH3)–C(CH2)2] and [(CH2)2C–C(CH2)2] have been studied. The negative ion photoelectron spectra reveal the tetramethyleneethane diradical, TME, to have two low-lying electronic states, [X with combining tilde] and ã. The ground [X with combining tilde] state is assigned as [TME] 1A and the excited ã state as [TME] 3B1. The energy separation between these states is about 2 kcal mol–1; ΔE[hair space]3B1 ← [X with combining tilde]1A] ≊ 0.1 eV. The experimental electron affinities of the neutrals are: Eea[CH2[double bond, length half m-dash]C(CH3)– C(CH2)2] = 0.654 ± 0.010 eV and Eea[(CH2)2C–C(CH2)2] = 0.855 ± 0.010 eV. The experimental gas phase acidities are: ΔacidH298[CH2[double bond, length half m-dash]C(CH3)–C(CH2)CH2–H] = 388 ± 3 kcal mol–1 and ΔacidH298[(CH2)2C–C(CH2)CH2–H] = 388 ± 4 kcal mol–1. These findings can be used to establish the bond energies and heats of formation: DH298[CH2[double bond, length half m-dash]C(CH3)–C(CH2)CH2–H] = 90 ± 3 kcal mol–1 and ΔfH298[(CH2)2C–C(CH3)[double bond, length half m-dash]CH2] = 48 ± 3 kcal mol–1; DH298[(CH2)2C–C(CH2)CH2–H] = 94 ± 4 kcal mol–1 and ΔfH298[(CH2)2C–C(CH2)2] = 90 ± 5 kcal mol–1.


References

  1. P. Dowd, J. Am. Chem. Soc., 1970, 92, 1066 CrossRef CAS.
  2. J. A. Berson, Acc. Chem. Res., 1997, 30, 238 CrossRef CAS.
  3. J. Lee, P. K. Chou, P. Dowd and J. J. Grabowski, J. Am. Chem. Soc., 1993, 115, 7902 CrossRef CAS.
  4. W. T. Borden, ‘Effects of Electron Repulsion in Diradicals’, in Diradicals, ed. W. T. Borden, Wiley, New York, 1982 Search PubMed.
  5. M. Bersohn and J. C. Baird, An Introduction to Electron Paramagnetic Resonance, Benjamin, 1966. On p. 76, it is claimed: ‘At this writing, the smallest sample that the best spectrometer can see is about 10(–14) moles of unpaired electrons per gauss of line width.’ With current technologies, it is likely that one can improve on this by an order-of-magnitude Search PubMed.
  6. W. Weltner Jr., Magnetic Atoms and Molecules, Van Nostrand Reinhold, New York, 1983 Search PubMed.
  7. W. R. Roth and G. Erker, Angew. Chem., Int. Ed. Engl., 1973, 12, 503 CrossRef.
  8. W. R. Roth, M. Biermann, G. Erker, K. Jelich, W. Gerhartz and H. Gorner, Chem. Ber., 1980, 113, 586 CAS.
  9. P. Dowd, W. Chang and Y. H. Paik, J. Am. Chem. Soc., 1986, 108, 7416 CrossRef CAS.
  10. K. J. Stone, M. M. Greenberg, J. L. Goodman, K. S. Peters and J. A. Berson, J. Am. Chem. Soc., 1986, 108, 8088 CrossRef CAS.
  11. W. R. Roth, U. Kowalczik, G. Maier, P. R. Reisenauer and W. Muller, Angew. Chem., Int. Ed. Engl., 1987, 26, 1285 CrossRef.
  12. P. Dowd, W. Chang and Y. H. Paik, J. Am. Chem. Soc., 1987, 109, 5284 CrossRef CAS.
  13. P. G. Wenthold, J. Ju and R. R. Squires, J. Am. Chem. Soc., 1994, 116, 6961 CrossRef CAS.
  14. P. G. Wenthold and R. R. Squires, J. Am. Chem. Soc., 1994, 116, 6401 CrossRef CAS.
  15. D. G. Leopold, K. K. Murray, A. E. Stevens-Miller and W. C. Lineberger, J. Chem. Phys., 1985, 83, 4849 CrossRef CAS.
  16. D. G. Leopold, A. E. Stevens Miller and W. C. Lineberger, J. Am. Chem. Soc., 1986, 108, 1379 CrossRef CAS.
  17. S. Pedersen, J. L. Herek and A. H. Zewail, Science, 1994, 266, 1359 CrossRef CAS.
  18. J. A. Berson, Science, 1994, 266, 1338 CrossRef CAS.
  19. C. Doubleday Jr., K. Bolton, G. H. Peslherbe and W. L. Hase, J. Am. Chem. Soc., 1996, 118, 9922 CrossRef CAS.
  20. B. K. Carpenter, Am. Scientist, 1997, 85, 138 Search PubMed.
  21. P. Du and W. T. Borden, J. Am. Chem. Soc., 1987, 109, 930 CrossRef CAS.
  22. P. Du and W. T. Borden, J. Am. Chem. Soc., 1992, 114, 4949 CrossRef.
  23. W. T. Borden, H. Iwamura and J. A. Berson, Acc. Chem. Res., 1994, 27, 109 CrossRef CAS.
  24. Y. Choi, K. D. Jordan, Y. H. Paik, W. Chang and P. Dowd, J. Am. Chem. Soc., 1988, 110, 7575 CrossRef CAS.
  25. P. Nachtigall, P. Dowd and K. D. Jordan, J. Am. Chem. Soc., 1992, 114, 4747 CrossRef CAS.
  26. P. Nachtigall and K. D. Jordan, J. Am. Chem. Soc., 1992, 114, 4743 CrossRef CAS.
  27. P. Nachtigall and K. D. Jordan, J. Am. Chem. Soc., 1993, 115, 270 CrossRef CAS.
  28. J. J. Nash, P. Dowd and K. D. Jordan, J. Am. Chem. Soc., 1992, 114, 10 071 CrossRef CAS.
  29. K. Matsuda and H. Iwamura, J. Am. Chem. Soc., 1997, 119, 7412 CrossRef CAS.
  30. J. Lee and J. J. Grabowski, Chem. Rev., 1992, 92, 1611 CrossRef CAS.
  31. K. M. Ervin and W. C. Lineberger, ‘Negative Ion Photoelectron Spectroscopy’, in Advances in Gas Phase Ion Chemistry, eds. N. G. Adams and L. M. Babcock, JAI Press, Greenwich, CT, 1992 Search PubMed.
  32. D. M. Neumark, K. R. Lykke, T. Andersen and W. C. Lineberger, Phys. Rev. A, 1985, 32, 1890 CrossRef CAS Eea(O)= 11 784.645 ± 0.006 cm–1 or 1.461 110 ± 0.000 001 eV.
  33. M. W. Siegel, R. J. Celotta, J. L. Hall, J. Levine and R. A. Bennett, Phys. Rev. A, 1972, 6, 607 CrossRef CAS.
  34. J. J. Grabowski and S. J. Melly, Int. J. Mass Spectrom. Ion Proc., 1987, 81, 147 CrossRef CAS.
  35. S. T. Graul and R. R. Squires, Mass Spectrom. Rev., 1988, 7, 263 CAS.
  36. J. J. Grabowski, ‘Flowing Afterglow Studies of Carbene Anions’, in Advances in Gas Phase Ion Chemistry, eds. L. M. Babcock and N. Adams, JAI Press, Greenwich, CT, 1992 Search PubMed.
  37. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17(supplement 1), 1; Most of the acidities are taken from the NIST Negative Ion Energetics Database, Version 3.00, NIST Standard Reference Database 19B, October 1993. NEGION.
  38. S. E. Barlow, T. T. Dang and V. M. Bierbaum, J. Am. Chem. Soc., 1990, 112, 6832 CrossRef CAS.
  39. M. S. Robinson, M. L. Polak, V. M. Bierbaum, C. H. DePuy and W. C. Lineberger, J. Am. Chem. Soc., 1995, 117, 6766 CrossRef CAS.
  40. J. J. Grabowski and D. Owusu, 1997, unpublished work. ΔacidG298(furan)= 382.9 ± 0.2 kcal mol–1 and ΔacidH298(furan)– 390.7 ± 0.2 kcal mol–1.
  41. G. E. Davico, V. M. Bierbaum, C. H. DePuy, G. B. Ellison and R. R. Squires, J. Am. Chem. Soc., 1995, 117, 2590 CrossRef CAS The entropy for ionization, AH → A+ H+ can be approximated by expression (A9): ΔacidST≅ 3/2 R ln|M(A)/M(AH)| +R/2 ln |A0B0C0(AH)/A0B0C0(A)| +R ln|σ(AH)/σ(A)| +ST(H+.
  42. P. G. Wenthold, M. L. Polak and W. C. Lineberger, J. Phys. Chem., 1996, 100, 6920 CrossRef CAS.
  43. J. Berkowitz, G. B. Ellison and D. Gutman, J. Phys. Chem., 1994, 98, 2744 CrossRef CAS.
  44. C. R. Moylan and J. I. Brauman, Ann. Rev. Phys. Chem., 1983, 34, 187 CAS.
  45. J. B. Pedley, R. D. Naylor and S. P. Kirby, Thermochemical Data of Organic Compounds, Chapman and Hall, 1986 Search PubMed.
  46. F. K. Meyer, J. M. Jasinski, R. N. Rosenfeld and J. I. Brauman, J. Am. Chem. Soc., 1982, 104, 663 CrossRef CAS.
  47. J. M. Oakes and G. B. Ellison, J. Am. Chem. Soc., 1984, 106, 7734 CrossRef CAS.
  48. C. H. Greene, G. B. Ellison and K. D. Jordan, 1997, unpublished results.
  49. P. G. Wenthold, J. Hu, R. R. Squires and W. C. Lineberger, J. Am. Chem. Soc., 1996, 118, 475 CrossRef CAS.
  50. E. P. Clifford, P. G. Wenthold, W. C. Lineberger, G. A. Petersson, K. A. Broadus, S. R. Kass, S. Kato, C. H. DePuy, V. M. Bierbaum and G. B. Ellison, J. Phys. Chem., submitted, Sept. 1997 Search PubMed.
  51. The B3LYP functional combines Becke's hybrid exchange functional (A. D. Becke, J. Chem. Phys., 1993, 98, 5648) and the LYP correlation functional [C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785) with the weights of the various terms in the functional being the default values in GAUSSIAN 94 Search PubMed.
  52. T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. v. R. Schleyer, J. Comput. Chem., 1983, 4, 294 CrossRef CAS.
  53. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257 CrossRef CAS.
  54. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN 94, Revision C.2, Gaussian, Inc., Pittsburgh, PA, 1996.
  55. J. Michl, J. Am. Chem. Soc., 1996, 118, 3568 CrossRef CAS.
  56. G. B. Ellison, G. E. Davico, V. M. Bierbaum and C. H. DePuy, Int. J. Mass Spectrom. Ion Proc., 1996, 156, 109 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.