Synthetic ionophores. Part 18: Ag+ selective trithiabenzena- and dithiabenzenapyridinacyclophanes[hair space]1

(Note: The full text of this document is currently only available in the PDF Version )

Subodh Kumar, Maninder Singh Hundal, Geeta Hundal, Palwinder Singh, Vandana Bhalla and Harjit Singh


Abstract

The phase transfer catalysed nucleophilic displacement of 1,3-bis(bromomethyl)benzene, 2-methoxy-5-methyl-1,3-bis(bromomethyl)benzene (2) and 1,4-bis(bromomethyl)benzene with 2-mercaptoethanol gives the respective diols 3, 4 and 12 (80–85%), which undergo intermolecular cyclodehydrochlorination with thiodiglycolyl dichloride and pyridine-2,6-dicarbonyl dichloride·HCl to provide m-phenylene (7–10) and p-phenylene (13–14) based crownophanes. The single crystal X-ray structures of crownophanes 8 and 13 and their NMR studies show that the m-phenylene and p-phenylene rings remain in plane and perpendicular to the macrocyclic ring both in solution and solid phases. These crownophanes offer three soft coordinating sites (3 × S or 2 × S and 1 N) conducive to complexation with Ag+ and the steric restrictions imposed by m- and p-phenylene rings restrict 2∶1 (L∶M) sandwich complexation required for complexation with the borderline soft Pb2+ cation. The crownophanes 7 and 9 extract Ag+ 172 and 602 times, respectively, more than Pb2+.


References

  1. Part 17: S. KumarJ. KaurH. SinghJ. Incl. Phenom. Mol. Recogn., in the press Search PubMedPreliminary communication: S. Kumar, V. Bhalla, P. Singh and H. Singh, Tetrahedron Lett., 1996, 53, 3495 Search PubMed.
  2. S. Kumar, M. S. Hundal, N. Kaur, R. Singh, H. Singh, G. Hundal, M. M. Ripoll and J. S. Aparicio, J. Org. Chem., 1996, 61, 7819 CrossRef CAS.
  3. S. Kumar, I. Kaur and H. Singh, Indian J. Chem., Sect. A, 1994, 33, 412.
  4. S. Kumar, N. Kaur and H. Singh, Tetrahedron, 1996, 52, 13 483 CrossRef CAS.
  5. S. Kumar, N. Kaur and H. Singh, Tetrahedron, 1997, 53, 10 841 CrossRef CAS.
  6. S. Kumar, V. Bhalla and H. Singh, Bioorg. Med. Chem. Lett., 1995, 5, 1917 CrossRef CAS.
  7. H. Tsukube, J. Venishi, N. Kojima and O. Yanemitsn, Tetrahedron Lett., 1995, 36, 2257 CrossRef CAS.
  8. T. Nabeshima, H. Furusawa and Y. Yano, Angew. Chem., Int. Ed. Engl., 1994, 33, 1750 CrossRef.
  9. T. Nabeshima, H. Furusawa, N. Tsukada, T. Shinnai, T. Haruyama and Y. Yano, Heterocycles, 1995, 655 CAS.
  10. T. Nabeshima, N. Tsukada, K. Nishijima, H. Oshiro and Y. Yano, J. Org. Chem., 1996, 61, 4342 CrossRef CAS.
  11. H. Hismoto, E. Nakagawa, K. Nagatsuka, Y. Abe, S. Sato, D. Siswanta and K. Suzuki, Anal. Chem., 1995, 67, 1315 CrossRef CAS.
  12. D. Siswanta, K. Nagatsuka, H. Yamada, K. Kumakura, H. Hisamoto, Y. Scichi, K. Toshima and K. Suzuki, Anal. Chem., 1996, 68, 4166 CrossRef CAS.
  13. T. Nabeshima, K. Nishijima, N. Tsukada, H. Furusawa, T. Hosoya and Y. Yano, J. Chem. Soc., Chem. Commun., 1992, 1092 RSC.
  14. J. Casabo, T. Flor, M. N. Stuart, H. A. Jenkins, J. C. Lockhart, S. J. Loeb, I. Romero and F. Texidor, Inorg. Chem., 1995, 34, 5410 CrossRef CAS.
  15. F. Texidor, M. A. Flores, L. Eschriche, G. Vinas and J. Cassabo, J. Chem. Soc., Chem. Commun., 1994, 963 RSC.
  16. Chemical shift variations for these compounds are within Δ±0.02.
  17. M. J. C. Crabbe and J. R. Appleyard, Desktop Molecular Modeller 2.0, Oxford Electronic Publishing, Oxford, 1991.
  18. (a) S. S. Moore, T. L. Tarnowski, M. Newcomb and D. J. Cram, J. Am. Chem. Soc., 1977, 99, 6398 CrossRef CAS; (b) K. E. Koeing, G. M. Lehn, P. Stuckler, T. Kaneda and D. J. Cram, J. Am. Chem. Soc., 1979, 101, 3553 CrossRef CAS.
  19. (a) K. Maruyama, H. Tsukube and T. Akai, J. Am. Chem. Soc., 1980, 102, 3246 CrossRef CAS; (b) K. Maruyama, H. Tsukube and T. Akai, J. Chem. Soc., Dalton Trans., 1981, 1486 RSC.
  20. G. M. Sheldrick, SHELXTL-PC version 5.03, Siemens Analytical Instruments Inc., Madison, WI, 1995.
  21. J. G. Vinter, A. Davis and M. R. Saunders, J. Comput. Aided Mol. Design, 1987, 1, 31 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.