An analysis of substituent effects on 1H and 13C NMR parameters of substituted furans. Linear free energy relationships and PM3 semiempirical calculations

(Note: The full text of this document is currently only available in the PDF Version )

Carlos Alvarez-Ibarra, María L. Quiroga-Feijóo and Emilio Toledano


Abstract

Forty five furans have been obtained in a synthetic project designed to evaluate monothiosubstituted furans as potential food flavourings. A full NMR (1H and 13C) study and PM3 molecular orbital semiempirical calculations have been carried out. Substituent-induced chemical shifts (SCS) for six and nine substituents at the 2- and 3-positions have been calculated and a separation of inductive and resonance effects of these substituents has been proposed. Finally, a linear correlation between the net atomic charges localized at ring carbons and their 13C NMR chemical shifts has been established.


References

  1. E. Toledano del Moral, Ph.D. Thesis, Universidad Complutense, Madrid, 1995.
  2. Chemistry of Heterocyclic Compounds in Flavours and Aromas, ed. G. Vernin, John Wiley, England, 1982 Search PubMed.
  3. (a) L. P. Hammett, J. Am. Chem. Soc., 1937, 59, 96 CrossRef CAS; (b) P. L. Hammett, Physical Organic Chemistry, McGraw Hill, New York, 1940, p. 184 Search PubMed; (c) H. H. Jaffé, Chem. Rev., 1953, 53, 191 CrossRef CAS; (d) H. H. Jaffé and H. L. Jones, Adv. Heterocycl. Chem., 1964, 3, 209 CAS; (e) P. Tomasik and C. D. Johnson, Adv. Heterocycl. Chem., 1976, 20, 1 CAS; (f) R. Franke, Theoretical Drug Design Methods, Elsevier, Amsterdam, 1984, ch. VIII and IX Search PubMed.
  4. S. Gronowitz, I. Johnson and A. B. Hörnfeldt, Chem. Scripta, 1975, 7, 211 Search PubMed.
  5. D. Spinelli, C. Lamartina, R. Noto, G. Consiglio and S. Chimichi, J. Chem. Res. (S), 1993, 300, (M) 1993, 1873 Search PubMed.
  6. F. M. Dean and M. V. Sargent, in Comprehensive Heterocyclic Chemistry, ed. A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984, vol. 4, pp. 531–569 and references cited herein Search PubMed.
  7. S. Gronowitz, G. Sörlin, B. Gestblom and R. A. Hoffman, Arkiv Kemi, 1962, 19, 483 Search PubMed.
  8. G. S. Redy and J. H. Goldstein, J. Am. Chem. Soc., 1962, 84, 583 CrossRef.
  9. K. Tori and T. Nagakawa, J. Phys. Chem., 1964, 68, 3163 CAS.
  10. T. F. Page, Jr., T. Alger and D. M. Grant, J. Am. Chem. Soc., 1965, 87, 5333 CrossRef.
  11. F. J. Weigert and J. D. Roberts, J. Am. Chem. Soc., 1968, 90, 3543 CrossRef CAS.
  12. H. J. Jakobsen and O. Manscher, Acta Chem. Scand., 1971, 25, 680 CAS.
  13. (a) V. Galasso and N. Trinajstic, Tetrahedron, 1972, 28, 4419 CrossRef CAS; (b) B. A. Hess, Jr., L. J. Schaad and C. W. Holyoke, Jr., Tetrahedron, 1972, 28, 3657 CrossRef; (c) J. Srogl, M. Janda, I. Stibor, V. Skàla, P. Trska and M. Ryska, Collect. Czech. Chem. Commun., 1974, 39, 3109; (d) N. D. Epiotis, W. R. Cherry, F. Bernardi and W. J. Hehre, J. Am. Chem. Soc., 1976, 98, 4361 CrossRef CAS; (e) J. M. Younkin, L. J. Smith and R. N. Compton, Theor. Chim. Acta, 1976, 41, 157 CAS; (f) L. Ernst, Angew. Chem., Int. Ed. Engl., 1976, 15, 303 CrossRef; (g) A. Mehlhorn, B. Schwenzer and K. Schwetlick, Tetrahedron, 1977, 33, 1483 CrossRef CAS; (h) A. Mehlhorn, B. Schwenzer and K. Schwetlick, Tetrahedron, 1977, 33, 1489 CrossRef CAS; (i) Y. Ohrn, Nato Adv. Study Inst. Ser., Ser. C, 1978, 46C, 317 Search PubMed; (j) A. Mehlhorn, B. Schwenzer, H.-J. Brückner and K. Schwetlick, Tetrahedron, 1978, 34, 481 CrossRef CAS; (k) N. Chaichit and B. M. Gatehouse, Cryst. Struct. Commun., 1981, 10, 83 Search PubMed.
  14. (a) I. Juchnovski and J. Kaneti, Tetrahedron, 1971, 27, 4269 CrossRef; (b) E. Corradi, P. Lazzeretti and F. Taddei, Mol. Phys., 1973, 26, 41 CAS; (c) J.-I. Aikara, J. Am. Chem. Soc., 1976, 98, 2750 CrossRef CAS.
  15. (a) V. Galasso and G. de Alti, Tetrahedron, 1971, 27, 4947 CrossRef CAS; (b) A. Z. Dzhumanazarova, I. A. Abronin, V. P. Litvinov, G. M. Zhidomirov and V. A. Korsunov, Khim. Geterotsikl. Soedin, 1979, 1456 Search PubMed.
  16. (a) I. A. Abronin, L. I. Belen'kii and G. M. Zhidomirov, Izv. Akad. Nauk. SSSR, Ser. Khim., 1977, 588 Search PubMed; (b) I. Stibor, P. Trska, J. Srogl and M. Janda, Collect. Czech. Chem. Commun., 1978, 43, 2170 CAS.
  17. (a) M. H. Palmer and S. M. F. Kennedy, J. Chem. Soc., Perkin Trans. 2, 1974, 1893 RSC; (b) M. Davis, R. Lakhan and B. Ternai, J. Org. Chem., 1976, 41, 3591 CrossRef CAS; (c) G. Simons and E. R. Talaty, J. Am. Chem. Soc., 1977, 99, 2407 CrossRef CAS; (d) D. Chou and H. Weinstein, Tetrahedron, 1978, 34, 275 CrossRef CAS; (e) I. G. John and L. Radom, J. Am. Chem. Soc., 1978, 100, 3981 CrossRef CAS; (f) F. Bernardi, L. Lunzzi, P. Zaninato and G. Cerioni, Tetrahedron, 1977, 33, 1337 CrossRef CAS; (g) R. F. Cordell and J. E. Boggs, Theochem., 1981, 85, 163 CrossRef CAS.
  18. R. Aroca-Muñoz, N. Mercau and D. Scherson, Rev. Latinoam. Quim., 1975, 6, 112 Search PubMed.
  19. C. G. Swain and E. C. Lupton, Jr., J. Am. Chem. Soc., 1968, 90, 4328 CrossRef CAS.
  20. C. Alvarez-Ibarra, M. L. Quiroga and E. Toledano, Tetrahedron, 1996, 52, 4065 CrossRef CAS.
  21. (a) W. J. Evers, H. H. Heinshon, Jr. and J. M. Bernard, US Pat. 3,910,966/ 1975(Chem. Abstr., 1976, 84, P30860g) Search PubMed; (b) W. J. Evers, H. H. Heinshon, Jr., B. J. Mayers and E. A. Karoll, US Pat. 3,917,869/ 1975(Chem. Abstr., 1976, 84, P42233t) Search PubMed; (c) W. J. Evers, H. H. Heinshon, Jr. and B. J. Meyers, US Pat. 3,922,288/ 1975(Chem. Abstr., 1976, 84, P121636e) Search PubMed; (d) W. J. Evers, H. H. Heinshon, Jr., B. J. Mayers and E. A. Karoll, US Pat. 3,958,029/ 1976(Chem. Abstr., 1976, 85, P159857m) Search PubMed; (e) W. J. Evers, B. J. Mayers, H. H. Heinshon, Jr. and E. A. Karoll, Ger. Pat. 2,437,890/ 1975(Chem. Abstr., 1975, 82, P170655c) Search PubMed; (f) W. J. Evers, Ger. Pat. 2,003,525/ 1969(Chem. Abstr., 1970, 73, P9878n) Search PubMed.
  22. The exchange bromine–lithium has been more developed on 3-bromofuran23–30 and 2,3-dibromofuran27,29,31,32 than 3,4-dibromofuran20 or other 3-bromofurans.
  23. (a) D. J. Chadwick, J. Chambers, P. K. G. Hodgson, G. D. Meakins and R. L. Snowden, J. Chem. Soc., Perkin Trans. 1, 1974, 1141 RSC; (b) M. J. Kurth and C. J. Soares, Tetrahedron Lett., 1987, 28, 1031 CrossRef CAS; (c) I. Bock, H. Bornowski, A. Rauft and H. Theis, Tetrahedron, 1990, 46, 1199 CrossRef CAS.
  24. (a) J. L. Marco and J. A. Hueso-Rodríguez, Tetrahedron Lett., 1988, 29, 2459 CrossRef CAS; (b) C. Harde and F. Bohlmann, Tetrahedron, 1988, 44, 81 CrossRef CAS.
  25. K. Wiesner, Int. Conf. Chem. Biotechnol. Biol. Act. Nat. Prod., 1981, 1, 7 Search PubMed.
  26. G. D. Hartman and W. Halczenko, J. Heterocycl. Chem., 1989, 26, 1793 CAS.
  27. M. Gorzynski and D. Rewicki, Liebigs Ann. Chem., 1986, 625 Search PubMed.
  28. L. Camici, A. Ricci and M. Taddei, Tetrahedron Lett., 1986, 27, 5155 CrossRef CAS.
  29. (a) M. M. Robba, M. C. Zaluski and B. M. Roques, C. R. Acad. Sci. Paris, 1967, 264C, 413 Search PubMed; (b) S. Gronowitz and U. Michael, Arkiv Kemi, 1970, 32, 283 Search PubMed.
  30. Y. Fukuyama, Y. Kawashima, T. Miwa and T. Tokorayama, Synthesis, 1974, 443 CrossRef CAS.
  31. R. Sornay, J. M. Meunier and P. Fournari, Bull. Soc. Chim. Fr., 1971, 990 CAS.
  32. M. Bernard, Ger. Pat. 2,030,625/ 1969(Chem. Abstr., 1969, 72, P76318h) Search PubMed.
  33. D. G. Manly and G. D. Amstutz, J. Org. Chem., 1956, 21, 516 CrossRef CAS.
  34. R. Adams and A. Ferretti, J. Am. Chem. Soc., 1959, 81, 4927 CrossRef CAS.
  35. S. M. Nolan and T. Cohen, J. Org. Chem., 1981, 46, 2473 CrossRef CAS.
  36. R. A. Silverman and D. M. Burness, J. Org. Chem., 1968, 33, 1869 CrossRef CAS.
  37. S. Gronowitz and G. Sörlin, Arkiv Kemi, 1962, 19, 515 Search PubMed.
  38. E. Niwa, H. Aoki, H. Tanaka, K. Munakata and M. Namiki, Chem. Ber., 1966, 99, 3215 CAS.
  39. B. Cederlund, R. Lantz, A. B. Hörnfeldt, O. Thorstad and K. Undkeim, Acta Chem. Scand., Ser. B, 1977, 31, 198 Search PubMed.
  40. C. H. Eugster, M. Balmer, R. Prewo and J. H. Bieri, Helv. Chim. Acta, 1981, 64, 2636 CAS.
  41. J. M. Read, Jr., C. T. Mathis and J. H. Goldstein, Spectrochim. Acta, 1965, 21, 85 CrossRef.
  42. R. J. Abraham and H. J. Bernstein, Can. J. Chem., 1959, 37, 2095 CAS.
  43. R. J. Abraham and H. J. Bernstein, Can. J. Chem., 1961, 39, 216 CAS.
  44. R. J. Abraham and H. J. Bernstein, Can. J. Chem., 1961, 39, 905 CAS.
  45. The analysis was performed with the software MATHCAD 5.0, version 5.0; MathSoft Inc., Cambridge, USA, 1995.
  46. The statistical treatment was made with SPSS for Windows, version 6.0.1, SPSS Inc., Chicago, USA, 1993.
  47. E. Pretsch, T. Clerc, J. Seibl and W. Simon, Tables of Spectral Data for Structural Determination of Organic Compounds, Springer Verlag, Berlin, 2nd edn., 1989 Search PubMed.
  48. S. Gronowitz, Adv. Heterocycl. Chem., 1963, 1, 1 CAS.
  49. S. Gronowitz, Arkiv Kemi, 1958, 13, 295 Search PubMed.
  50. The linear regressions between meta-positions of proton and/or carbons contrast to the results previously described in the literature4 for monosubstituted thiophenes, selenophenes and furans.
  51. S. Ehrenson, R. T. C. Brownlee and R. W. Taft, Progr. Phys. Org. Chem., 1973, 10, 1–80 Search PubMed.
  52. R. W. Taft, Jr., S. Ehrenson, I. C. Lewis and R. E. Glick, J. Am. Chem. Soc., 1959, 81, 5352 CrossRef.
  53. (a) G. F. Fadhil, Z. Naturforsch. Teil A, 1992, 47, 775 CAS; (b) W. B. Smith and T. W. Proulx, Org. Magn. Reson., 1976, 8, 567 Search PubMed; (c) F. Hruska, H. M. Hutton and T. P. Schaefer, Can. J. Chem., 1965, 43, 2392 CAS; (d) W. F. Reynolds, A. Gomes, A. Maron, D. W. MacIntyre, R. G. Maunden, A. Tanin, H. E. Wong, G. K. Hamer and I. R. Peat, Can. J. Chem., 1983, 61, 2367 CAS.
  54. R and F(Swain),19σnR(Wepster),55M and F(Dewar),56σoR(Brownlee et al.),51,57σoR(Katritzky),58S and F(Godfrey),59σoR and σF(Reynolds),60 PA,59σoR(theoretical),57Σqπ,57σI(Taft,52 Grob,61 Charton62 and Adcock63), AISE (Pytela).64.
  55. A. J. Hoefnagel and B. M. Wepster, J. Am. Chem. Soc., 1973, 95, 5357 CrossRef CAS.
  56. (a) M. J. S. Dewar and P. J. Grisdale, J. Am. Chem. Soc., 1962, 84, 3539 CrossRef CAS; (b) M. J. S. Dewar and P. J. Grisdale, J. Am. Chem. Soc., 1962, 84, 3548 CrossRef CAS.
  57. J. Bromilow, R. T. C. Brownlee, V. O. López and T. W. Taft, J. Org. Chem., 1979, 44, 4766 CrossRef CAS.
  58. A. R. Katritzky and R. D. Topsom, Chem. Rev., 1977, 77, 639 CrossRef CAS.
  59. G. F. Fadhil and M. Godfrey, J. Chem. Soc., Perkin Trans. 2, 1982, 933 RSC.
  60. W. F. Reynolds, A. Gomes, A. Maron, D. W. MacIntyre, A. Tanin, G. K. Hamer and I. R. Peat, Can. J. Chem., 1983, 61, 237.
  61. C. A. Grob, B. Schaub and M. G. Schlageter, Helv. Chim. Acta, 1980, 63, 57 CrossRef CAS.
  62. M. Charton, Progr. Phys. Org. Chem., 1981, 13, 119 Search PubMed.
  63. W. Adcock and A. N. Abeywickroma, J. Org. Chem., 1982, 47, 2957 CrossRef CAS.
  64. O. Pytela, Collect. Czech. Chem. Commun., 1996, 61, 1191 CrossRef CAS.
  65. Linear correlations between the AISE parameters proposed by Pytela64 and the SCS values were unobserved.
  66. The F parameter measures the field or inductive effect and the R parameter evaluates the mesomeric or resonance effect of the substituent. The F parameter is positive for σ-withdrawing and negative for σ-donor substituents, respectively, and the R parameter is negative for donor and positive for withdrawing substituents. The values of F and R parameters of the considered substituents in the bilinear regressions have been taken from references 4 and 19: substituent (F, R): Br (0.727, –0.176), SMe (0.332, –0.186), Me (–0.052, –0.141), CO2H (0.552, 0.140), Et (–0.065, –0.114), SH (0.464, –0.111), OMe (0.413, –0.500), Cl (0.690, –0.161), I(0.672, –0.197), COCH3(0.534, 0.202), CN (0.847, 0.184), H(0.000, 0.000).
  67. The bilinear regressions were performed with the software package FIG. P from Biosoft, Cambridge, UK, 1994.
  68. (a) D. F. Ewing, Org. Magn. Reson., 1973, 5, 567 Search PubMed; (b) B. P. Dailey and J. N. Schoolery, J. Am. Chem. Soc., 1955, 77, 3977 CrossRef CAS; (c) M. L. Huggins, J. Am. Chem. Soc., 1953, 75, 4123 CrossRef CAS; (d) H. O. Pritchard and H. A. Skinner, Chem. Rev., 1955, 55, 745 CrossRef CAS; (e) T. Schaefer, Can. J. Chem., 1962, 40, 1.
  69. Δ1J(13C, 1H)=1J(13C, 1H)polysubstituted furan1J(13C, 1H)furan.
  70. Calculations were performed using the program MOPAC, version 6.0 (QCPE 455) implemented in a Silicon Graphics Workstation. All geometry optimizations involved the keyword PRECISE (criteria for convergence to be increased by a factor of 10–100), and the programs used included the parametrization of S and Br.
  71. (a) J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 CrossRef CAS; (b) J. J. P. Stewart, J. Comput. Chem., 1989, 10, 221 CrossRef CAS.
  72. H. Günther, NMR Spectroscopy, John Wiley, Stuttgart, 1980, p. 366 Search PubMed.
  73. Z. N. Nazarova and Y. A. Babaev, Zh. Obshch. Khim., 1964, 34, 4010 CAS.
  74. Y. L. Gold'farb, B. S. El'yanov, Y. L. Danyushevskii, M. A. Marakatkina and G. M. Parfenova, Zh. Org. Khim., 1971, 7, 1915 CAS.
  75. (a) R. Okazaki, Y. Negishi and N. Inamoto, J. Chem. Soc., Chem. Commun., 1982, 1055 RSC; (b) R. Okazaki, Y. Negishi and N. Inamoto, J. Org. Chem., 1984, 49, 3819 CrossRef CAS.
  76. U. A. Huber and D. Bergamin, Helv. Chim. Acta, 1993, 76, 2528 CAS.
  77. R. Tressl and R. Silwar, J. Agric. Food Sci., 1981, 29, 1978.
Click here to see how this site uses Cookies. View our privacy policy here.