Mechanism of the dimethyldioxirane oxidation of N,N-dimethylanilines

(Note: The full text of this document is currently only available in the PDF Version )

P. Christopher Buxton, Julie N. Ennis, Brian A. Marples, Victoria L. Waddington and Todd R. Boehlow


Abstract

Relative rates of dimethyldioxirane oxidation of a number of para-substituted N,N-dimethylanilines in acetone at 5 °C are compared with those of reactions with methyl iodide and other oxidants. The reactions with dimethyldioxirane followed the Hammett relationship with a ρ value of –1.0. Measurement of the second order rate constants for the dimethyldioxirane reactions in aqueous acetonitrile containing potassium nitrate at 21 °C, showed better correlation with the Hammett relationship (ρ = 0.89) than with the Okamoto–Brown model (ρ+ = 0.56). The reaction rates are accelerated greatly in the presence of water such that the respective pseudo first order rate constants for the oxidation of N,N-dimethyl-4-nitroaniline in acetone and water are 6.3 × 10–3 and 5.86 s–1, respectively. All of the data are consistent with a concerted electrophilic mechanism and there is no evidence of free radical or electron transfer reactions.


References

  1. (a) W. Adam and L. Hadjiarapoglou, Top. Curr. Chem., 1993, 164, 45 CAS; (b) R. Curci, in Advances in Oxygenated Processes, ed. A. L. Baumstark, JAI Press, Greenwich, 1990, pp. 1–59 Search PubMed.
  2. R. W. Murray and D. L. Shang, J. Chem. Soc., Perkin Trans. 2, 1990, 349 RSC.
  3. R. W. Murray, R. Jeyaraman and M. K. Pillay, J. Org. Chem., 1987, 52, 746 CrossRef CAS.
  4. R. W. Murray and H. Gu, J. Org. Chem., 1995, 60, 5673 CrossRef CAS.
  5. W. Adam and D. Golsch, Angew. Chem., Int. Ed. Eng., 1993, 32, 737 CrossRef.
  6. A. L. Baumstark, M. Beeson and P. C. Vasquez, Tetrahedron Lett., 1989, 30, 5567 CrossRef CAS.
  7. F. Kovac and A. L. Baumstark, Tetrahedron Lett., 1994, 35, 8751 CrossRef.
  8. A. Bravo, F. Fontana, G. Fronza, F. Minisci and A. Serri, Tetrahedron Lett., 1995, 38, 6945 CrossRef.
  9. F. Minisci, L. Zhao, F. Fontana and A. Bravo, Tetrahedron Lett., 1995, 36, 1697 CrossRef CAS.
  10. J. K. Crandall, M. Zucco, R. S. Kirsch and D. M. Coppert, Tetrahedron Lett., 1991, 32, 5441 CrossRef CAS.
  11. A. Altamura, C. Fusco, L. D'Accolti, R. Mello, T. Prencipe and R. Curci, Tetrahedron Lett., 1991, 32, 5445 CrossRef CAS.
  12. W. Adam and A. Schonberger, Tetrahedron Lett., 1992, 33, 53 CrossRef CAS.
  13. B. C. Challis and A. R. Butler, in The Chemistry of the Amino Group, ed. S. Patai, Interscience, London, 1968, pp. 320–347, and references therein Search PubMed.
  14. H. E. de la Mare, J. Org. Chem., 1960, 25, 2114 CrossRef CAS; L. A. Harris and J. S. Olcott, J. Am. Oil Chem. Soc., 1966, 43, 11 CAS.
  15. L. Kuhnen, Chem. Ber., 1966, 99, 3384 CAS.
  16. A. H. Kuthier, K. Y. Al-Mallah, S. Y. Hanna and N. A. I. Abdulla, J. Org. Chem., 1987, 1710 CrossRef.
  17. The differences in the results with methyl iodide from those recorded in the literature (ref. 21) may be a function of the different reaction conditions or the lack of sensitivity of the method of analysis.
  18. L. P. Hammett, J. Am. Chem. Soc., 1937, 59, 76.
  19. C. H. Brown and Y. Okamato, J. Am. Chem. Soc., 1958, 80, 4979 CrossRef CAS It is possible that a conjugative effect could be significant in an electron transfer mechanism.
  20. Note the lower correlation coefficient also for the Okamoto–Brown plot for cumene oxidation (ref. 4).
  21. K. B. Wiberg, Physical Organic Chemistry, Wiley, New York, 1964, pp. 379, 405 Search PubMed.
  22. W. Adam, G. Asensio, R. Curci, M. E. González-Núñez and R. Mello, J. Org. Chem., 1992, 57, 953 CrossRef CAS.
  23. R. W. Murray and D. Gu, J. Chem. Soc., Perkin Trans. 2, 1993, 2203 RSC.
  24. R. W. Murray and D. Gu, J. Chem. Soc., Perkin Trans. 2, 1994, 461 Search PubMed.
  25. J. P. Lorand, J. L. Anderson, Jr., B. P. Shafer and D. L. Verral II, J. Org. Chem., 1993, 58, 1560 CrossRef CAS.
  26. B. A. Marples, J. P. Muxworthy and K. H. Baggaley, Tetrahedron Lett., 1991, 32, 533 CrossRef CAS.
  27. W. Adam and A. K. Smerz, Tetrahedron, 1995, 51, 13 039 CrossRef CAS.
  28. K. Miaskiewicz, N. A. Teich and D. A. Smith, J. Org. Chem., 1997, 62, 6493 CrossRef CAS.
  29. W. Adam, R. Curci, L. D'Accolti, A. Dinnoi, C. Fusco, F. Gasparini, R. Kluge, R. Paredes, M. Schulz, A. K. Smerz, L. A. Veloza, S. Weinkotz and R. Winde, Chem. Eur. J., 1997, 3, 105 CrossRef CAS.
  30. W. Adam, J. Bialas and L. Hadjiarapoglou, Chem. Ber., 1991, 124, 2377 CrossRef CAS.
  31. G. W. Gribble and C. F. Nutaitis, Synthesis, 1987, 709 CrossRef CAS.
  32. (a) N,N-Dimethyl-4-methoxyaniline: D. G. Thomas, J. H. Billman and C. E. Davis, J. Am. Chem. Soc., 1946, 68, 895 Search PubMed; (b) N,N-dimethyl-4-chloroaniline, D. P. Evans and R. Williams, J. Chem. Soc., 1939, 1199 Search PubMed.
  33. M. Ferrer, F. Sanchez-Baez and A. Messegner, Tetrahedron, 1997, 53, 15 877 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.