Kinetics of aromatic iodination reactions using iodine, diiodine pentoxide and sulfuric acid in acetic acid

(Note: The full text of this document is currently only available in the PDF Version )

Linda C. Brazdil, Jill L. Fitch, Carlo J. Cutler, Denise M. Haynik and Eryn R. Ace


Abstract

Kinetic studies of an aromatic iodination reaction using benzene or acetanilide, iodine, diiodine pentoxide and sulfuric acid in glacial acetic acid have been carried out. The reaction, followed using FT-Raman spectroscopy to monitor the disappearance of the aromatic over time, exhibits fractional order dependence in benzene but first order dependence in acetanilide. The difference in order between the two aromatics indicates that benzene participates in an equilibrium reaction before the rate limiting step of the reaction. This reversible step is proposed to be the reversible formation of a π-complex between adsorbed I2 and benzene as it adsorbs onto I2O5. Based on the calculated order, acetanilide most likely does not form a π-complex with adsorbed I2, rather it reacts from solution to form a σ-complex with activated I2 on the I2O5 surface. In both reactions, it is proposed that the rate limiting step is the formation of the σ-complex.


References

  1. A. Bachi, F. Foubelo and M. Yus, Tetrahedron, 1994, 50, 5139 CrossRef CAS.
  2. G. A. Olah, Q. Wang, G. Sanford and G. K. S. Prakash, J. Org. Chem., 1993, 58, 3194 CrossRef CAS.
  3. R. C. Larock and E. K. Yum, J. Am. Chem. Soc., 1991, 113, 6689 CrossRef CAS.
  4. R. C. Larock and N. H. Lee, J. Org. Chem., 1991, 56, 6253 CrossRef CAS.
  5. E. C. Taylor and G. S. K. Wong, J. Org. Chem., 1989, 54, 3618 CrossRef CAS.
  6. W. C. Eckelman, H. R. Adams and C. H. Paik, Int. J. Nucl. Med. Biol., 1984, 11, 163 Search PubMed.
  7. A. Keyes, D. R. Johnson and R. L. Soulen, presented at the 208th American Chemical Society National Meeting, Washington, DC, 1994, Abstract 72.
  8. C. J. Galli and S. D. Giammarino, J. Chem. Soc., Perkin Trans. 2, 1994, 1261 RSC.
  9. C. J. Galli, J. Org. Chem., 1991, 56, 3238 CrossRef CAS.
  10. E. B. Merkushev, Synthesis, 1988, 923 CrossRef CAS.
  11. R. M. Keefer and L. J. Andrews, J. Am. Chem. Soc., 1956, 78, 5623 CrossRef CAS.
  12. C. A. Horiuchi and J. Y. Satoh, Bull. Chem. Soc. Jpn., 1984, 57, 2691 CAS.
  13. M. Kodamari, H. Satoh and S. Yoshitomi, J. Org. Chem., 1988, 53, 2093 CrossRef CAS.
  14. T. Okamoto, T. Kakinami, T. Nishimura, I. Hermawan and S. Kajigaeshi, Bull. Chem. Soc. Jpn., 1992, 65, 1731 CAS.
  15. L. C. Brazdil and C. J. Cutler, J. Org. Chem., 1996, 61, 9621 CrossRef CAS.
  16. I. Masson, J. Chem. Soc., 1938, 1708 RSC.
  17. J. J. Janas, E. T. Asirvatham and E. McNelis, Oxid. Commun., 1985, 8, 65 Search PubMed.
  18. M. J. Cohen and E. McNelis, J. Org. Chem., 1984, 49, 515 CrossRef CAS.
  19. G. Gebeyehu and E. McNelis, J. Org. Chem., 1980, 45, 4280 CrossRef CAS.
  20. K. J. Laidler, Chemical Kinetics, Harper Collins, New York, 3rd edn., 1987, pp. 230–234, 248–252 Search PubMed.
  21. A. F. Wells, Structural Inorganic Chemistry, Clarendon Press, Oxford, 5th edn., 1984, pp. 386, 401 Search PubMed.
  22. D. M. Haynik and L. C. Bradzil, presented at the Cleveland Section American Chemical Society Meeting in Miniature, Cleveland, March, 1997.
  23. Y. Ogata and K. Aoki, J. Am. Chem. Soc., 1968, 90, 6187 CrossRef CAS.
  24. Y. Ogata and K. Nakajima, Tetrahedron, 1964, 20, 43 CrossRef CAS.
  25. Y. Ogata and K. Nakajima, Tetrahedron, 1964, 20, 2751 CrossRef CAS.
  26. Y. Ogata and I. Urasaki, J. Chem. Soc. C, 1970, 1689 Search PubMed.
  27. L. Melander, Isotope Effects on Reaction Rates, The Ronald Press Co., New York, 1960, p. 124 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.