Dipolar correlation coefficients in the time and frequency domains for low molecular weight models of acrylate polymers

(Note: The full text of this document is currently only available in the PDF Version )

Enrique Saiz, Evaristo Riande and Ricardo Díaz-Calleja


Abstract

The temperature dependence of the components of the complex relative permittivity of 2-biphenyl isobutyrate (OBPI) and bis(biphenyl-2-yl) 2,4-dimethylglutarate (OBPG), model compounds of a single repeating unit and a dimer of poly(biphenyl-2-yl acrylate), respectively, is reported in the frequency range 10–4–102 kHz. The relaxation spectra of both compounds at 0.1 Hz exhibit glass–liquid relaxations with maxima located at –61.2 and –8.8 °C, respectively, for OBPI and OBPG. Subglass absorptions are not detected in the glassy state down to –120 °C. The free volume fraction at Tg is calculated to be 0.024 and 0.028 for OBPI and OBPG, respectively. Molecular dynamics (MD) simulations give the following values for the mean-square dipole moment of OBPI: 4.01, 2.92 and 2.80 D2 at 1000, 500 and 300 K, respectively. The values of 〈µ2〉 at 500 and 300 K are in rather good agreement with the experimental result, 2.69 ± 0.13 D2, at 303 K. The time dependence of the dipolar autocorrelation coefficient ϕ(t) is calculated by MD at several temperatures. Transformation of the autocorrelation coefficient from the time to the frequency domain permits the determination of the components of the complex permittivity for these compounds. At low temperatures, the mobility of the molecules is not large enough to cover the whole conformational space within a reasonable computing time. At temperatures lying in the neighbourhood of 500 K, the molecules already visit the whole conformational space, and the values of the complex permittivity in the frequency domain obtained from the ϕ(t) of OBPI and OBPG are in good agreement with the experimental results. These results suggest that the intermolecular cross-correlation terms, although present, do not alter in a significant way the time dependence of ϕ(t).


References

  1. F. H. Stillinger, Science, 1995, 267, 1935 CrossRef CAS.
  2. C. A. Angell, Science, 1995, 267, 1924 CrossRef CAS.
  3. H. Vogel, Z. Phys., 1921, 22, 645 CAS.
  4. G. S. Fulcher, J. Am. Ceram. Soc, 1925, 8, 339 CAS.
  5. G. Tammann and W. Z. Hesse, Z. Anorg. Allgem. Chem., 1926, 156, 245 Search PubMed.
  6. K. Kauzmann, Chem. Rev., 1948, 43, 219 CrossRef CAS.
  7. R. Kohlrausch, Ann. Phys., 1847, 12(3), 3931 Search PubMed.
  8. G. Williams and D. C. Watts, Trans. Faraday Soc., 1970, 66, 80 RSC.
  9. R. C. Nunes, M. R. Pinto, E. Saiz and E. Riande, Macromolecules, 1995, 28, 211 CrossRef CAS.
  10. E. Saiz, C. Alvarez, E. Riande, M. R. Pinto and C. Salom, J. Chem. Phys., 1996, 105, 8266 CrossRef CAS.
  11. E. Saiz and E. Riande, J. Chem. Phys., 1995, 103, 3832 CrossRef CAS.
  12. E. Saiz, E. Riande, J. Guzmán and M. T. Iglesias, J. Phys. Chem., 1996, 100, 3818 CrossRef CAS.
  13. E. Saiz, J. Guzmán, M. T. Iglesias and E. Riande, J. Phys. Chem., 1996, 100, 18 345 CrossRef CAS.
  14. E. A. Guggenheim, Trans. Faraday Soc., 1949, 45, 714 RSC.
  15. J. W. Smith, Trans. Faraday Soc., 1950, 46, 394 RSC.
  16. A. K. Dolittle and D. B. Doolittle, Appl. Phys., 1957, 28, 901 Search PubMed.
  17. D. C. Turnbull and M. H. Cohen, Chem. Phys., 1958, 29, 1049 CAS.
  18. J. D. Ferry, Viscoelastic Properties of Polymers, Interscience, New York, 1980 Search PubMed.
  19. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987 Search PubMed.
  20. Tripos Associates Inc., St Louis, MO 63144, USA.
  21. M. Clark, R. D. Cramer, III and N. van Opdembosch, J. Comput. Chem., 1989, 10, 983 CrossRef CAS.
  22. MPAC, Quantum Chemistry Program Exchange, Department of Chemistry, Indiana Univ., Bloomington, IN 47 405 Search PubMed.
  23. M. Cook, D. C. Watts and G. Williams, Trans. Faraday Soc., 1970, 66, 2503 RSC.
  24. G. Williams, Chem. Rev., 1972, 72, 55 CrossRef CAS.
  25. G. Williams, Adv. Polym. Sci., 1979, 33, 60.
  26. G. Williams, M. Cook and P. J. Hains, J. Chem. Soc., Faraday Trans. 2, 1972, 69, 1045 RSC.
  27. G. Williams and D. C. Watts, in NMR, Basic Principles and Progress, Vol. 4, NMR of Polymers, Springer Verlag, 1971, p. 271 Search PubMed.
  28. G. Williams, Dielectric Relaxation Spectroscopy of Amorphous Polymer Systems: The Modern Approaches, in ‘Keynote Lectures in Selected Topics of Polymer Science’, ed. E. Riande, C.S.I.C., 1995, p. 7 Search PubMed.
  29. Refs. 54–69 in ref. 28.
  30. R. Díaz-Calleja, E. Riande, J. San Román and V. Compañ, Macromolecules, 1995, 28, 614 CrossRef CAS.
  31. E. Saiz, E. Riande and R. Díaz-Celleja, J. Phys. Chem. (A), 1997, 101, 7234 CrossRef.
  32. E. Riande and E. Saiz, Dipole Moments and Birefringence of Polymers, Prentice Hall, Englewood Cliffs, NJ, 1992, p. 128 Search PubMed.
  33. G. Williams, D. C. Watts, S. B. Dev and A. M. North, Trans. Faraday Soc., 1971, 67, 1323 RSC.
  34. E. Saiz, E. Rainde, R. Díaz-Calleja and J. Guzmán, J. Phys. Chem. (B), 1997, in the press Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.