RNA hydrolysis by cobalt(III) complexes[hair space]1

(Note: The full text of this document is currently only available in the PDF Version )

Makoto Komiyama, Yoichi Matsumoto, Hideyuki Takahashi, Tetsuro Shiiba, Hidetoshi Tsuzuki, Hideaki Yajima, Morio Yashiro and Jun Sumaoka


Abstract

Adenylyl(3′-5′)adenosine (ApA) and uridylyl(3′-5′)uridine (UpU) are hydrolyzed at pH 7.0 and 50 °C by [Co(N)4(OH2)2]3+ complexes (N: coordinated nitrogen atom). The pseudo-first-order rate constants for ApA hydrolysis by the triethylenetetramine and the tris(2-aminoethyl)amine complexes (0.1 mol dm–3) are 1.5 × 10–2 h–1, corresponding to 105-fold acceleration. The CoIII complexes are also active for the hydrolysis of 2′,3′-cyclic monophosphates of ribonucleotides. The pH–rate constant profile for ApA hydrolysis is bell-shaped with a maximum around pH 7, and a notable D2O solvent isotope effect (2.0) is observed. It is proposed that the coordination water molecules on the CoIII ions promote (as general acid catalysts) the departure of the alkoxide ion of 5′-OH from the phosphorus atom.


References

  1. Preliminary communication: Y. Matsumoto and M. Komiyama, J. Chem. Soc., Chem. Commun., 1990, 1050 Search PubMed.
  2. Reviews: (a) T. R. Cech, Science, 1987, 236, 1532 CAS; (b) M. Komiyama, J. Biochem., 1995, 118, 665 CAS; (c) R. Breslow, Acc. Chem. Res., 1991, 24, 317 CrossRef CAS; (d) D. M. Perreault and E. V. Anslyn, Angew. Chem., Int. Ed. Engl., 1997, 36, 432 CrossRef.
  3. G. L. Eichhorn, in Inorganic Biochemistry, ed. G. L. Eichhorn, Elsevier, Amsterdam, 1973, vol. 2, ch. 32 Search PubMed.
  4. B. Barbier and A. Brack, J. Am. Chem. Soc., 1988, 110, 6880 CrossRef CAS.
  5. J. Ciesiolka, T. Marciniec and W. Krzyzosiak, Eur. J. Biochem., 1989, 182, 445 CAS.
  6. M. K. Stern, J. K. Bashkin and E. D. Sall, J. Am. Chem. Soc., 1990, 112, 5357 CrossRef CAS.
  7. K. Yoshinari, K. Yamazaki and M. Komiyama, J. Am. Chem. Soc., 1991, 113, 5899 CrossRef CAS.
  8. R. Breslow and D.-L. Huang, Proc. Natl. Acad. Sci. USA, 1991, 88, 4080 CAS.
  9. M. Komiyama, K. Matsumura and Y. Matsumoto, J. Chem. Soc., Chem. Commun., 1992, 640 RSC.
  10. J. R. Morrow, L. A. Buttrey, V. M. Shelton and K. A. Berback, J. Am. Chem. Soc., 1992, 114, 1903 CrossRef CAS.
  11. (a) D. R. Jones, L. F. Lindoy and A. M. Sargeson, J. Am. Chem. Soc., 1983, 105, 7327 CrossRef CAS; (b) D. R. Jones, L. F. Lindoy and A. M. Sargeson, J. Am. Chem. Soc., 1984, 106, 7807 CrossRef CAS; (c) R. Wijesekera, P. Hendry and A. M. Sargeson, Aust. J. Chem., 1992, 45, 1187.
  12. (a) G. Rawji, M. Hediger and R. M. Milburn, Inorg. Chim. Acta, 1983, 79, 247 CrossRef; (b) R. M. Milburn, M. Gautem-Basak, R. Tribolet and H. Sigel, J. Am. Chem. Soc., 1985, 107, 3315 CrossRef CAS.
  13. (a) J. Chin and X. Zou, Can. J. Chem., 1987, 65, 1882 CAS; (b) J. Chin, M. B. Banaszczyk, V. Jubian and X. Zou, J. Am. Chem. Soc., 1989, 111, 186 CrossRef CAS; (c) J. Chin and M. Banaszczyk, J. Am. Chem. Soc., 1989, 111, 4103 CrossRef CAS; (d) J. H. Kim and J. Chin, J. Am. Chem. Soc., 1992, 114, 9792 CrossRef CAS and references therein.
  14. (a) Y. Matsumoto, M. Komiyama and K. Takeuchi, Chem. Lett., 1990, 427 CAS; (b) Y. Matsumoto and M. Komiyama, Nucleic Acids, Symp. Ser., 1991, 25, 105 Search PubMed; (c) K. Yonezawa, Y. Matsumoto and M. Komiyama, Nucleic Acids, Symp. Ser., 1991, 25, 145 Search PubMed; (d) K. Yonezawa, Y. Matsumoto and M. Komiyama, Chem. Express, 1991, 6, 965 Search PubMed.
  15. P. R. Norman and R. D. Cornelius, J. Am. Chem. Soc., 1982, 104, 2356 CrossRef CAS.
  16. R. A. Kenley, R. H. Fleming, R. M. Laine, D. S. Tse and J. S. Winterle, Inorg. Chem., 1984, 23, 1870 CrossRef CAS.
  17. R. Hettich and H.-J. Schneider, J. Am. Chem. Soc., 1997, 119, 5638 CrossRef.
  18. N. E. Dixon, R. J. Geue, J. N. Lambert, S. Moghaddas, D. A. Pearce and A. M. Sargeson, Chem. Commun., 1996, 1287 RSC.
  19. C. K. Poon and M. L. Tobe, J. Chem. Soc. A, 1968, 1549 RSC.
  20. The CoIII complexes of diethylenetriamine and 1,10-phenanthroline were inactive, probably due to insufficient stability in the reaction mixtures.
  21. (a) R. G. Kuimelis and L. W. McLaughlin, Nucleic Acids Res., 1995, 23, 4753 CAS; (b) D.-M. Zhou, N. Usman, F. E. Wincott, J. M. Adamic, M. Orita, L.-H. Zhang, M. Komiyama, P. K. R. Kumar and K. Taira, J. Am. Chem. Soc., 1996, 118, 5862 CrossRef CAS.
  22. The present argument also holds even if the formation of the pentacoordinated intermediate and its breakdown proceed as a concerted process (see ref. 2d). There, the proposal should be read as ‘the scission of the P-O(5′) bond takes place only near the top of the reaction coordinate’.
  23. (a) T. C. Bruice, T. H. Fife, J. J. Bruno and N. E. Brandon, Biochemistry, 1962, 1, 7 CrossRef CAS; (b) Z. Shaked, R. P. Szajewski and G. M. Whitesides, Biochemistry, 1980, 19, 4156 CrossRef CAS.
  24. M. Oivanen, M. Ora, H. Almer, R. Stromberg and H. Lönnberg, J. Org. Chem., 1995, 60, 5620 CrossRef CAS.
  25. The substitution of 3′O for sulfur accelerated the alkaline hydrolysis; L. B. Weinstein, D. J. Earnshaw, R. Cosstick and T. R. Cech, J. Am. Chem. Soc., 1996, 118, 10 341 Search PubMed The effect was primarily attributed to the relief of strain in the five-membered ring (formed by the nucleophilic attack by 2′-OH), although some contribution of the increased polarizability was also indicated. Since no ‘strain effect’ is expected for the 5′O→S substitution and the acceleration is greater than that for the 3′O→S substitution, it is reasonable to ascribe the remarkable acceleration mostly to the difference in pKa. The argument is further supported by the fact that the S-substitution of non-bridging oxygen atoms causes no notable acceleration (ref. 24).
  26. The equilibrium constant for the complex formation between ApA and [Co(trien)(OH2)2]3+ at pH 7 and 50 °C has been determined to be 0.1 mol–1 dm3 by 31P NMR. Thus the rate of ApA hydrolysis linearly increases with [CoIII complex]0 under the conditions employed.
  27. Previous proposal of general base catalysis by the CoIII-bound hydroxide (ref. 1), which was based on the assumption that formation of the pentacoordinated intermediate is rate-limiting, should be withdrawn.
  28. Experimental error in these parameters is estimated to be around 10%. The smaller value of k3 than k4 is ascribed to electrostatic repulsion between the metal-bound hydroxide in [Co(trien)(OH2)(OH)]2+ and hydroxide ion. The equilibrium constants (K) for the formation of the substrate–CoIII complex are not taken into consideration in the calculation, since they do not affect the relative ratios of the parameters.
  29. Here the reactivities of [Co(trien)(OH2)(OH)]2+ and [Co(trien)(OH2)2]3+ are taken as equal to each other, although it is not necessarily the case. The context is unchanged, whether this assumption is strictly correct or not.
  30. According to an estimation using the results by P. Hendry and A. M. Sargeson(Inorg. Chem., 1990, 29, 92), the coordination of phosphate to CoIII complexes increases the electrophilicity of the phosphate around 50-fold, due to electrostatic effect: N. H. Williams and J. Chin, J. Chem. Soc., Chem. Commun., 1996, 131 Search PubMed.
  31. (a) M. Yashiro, A. Ishikubo and M. Komiyama, J. Chem. Soc. Chem. Commun., 1995, 1793 RSC; (b) A. Tsubouchi and T. C. Bruice, J. Am. Chem. Soc., 1995, 117, 7399 CrossRef CAS; (c) K. G. Ragunathan and H.-J. Schneider, Angew. Chem., Int. Ed. Engl., 1996, 35, 1219 CrossRef CAS; (d) M. Yashiro, A. Ishikubo and M. Komiyama, Chem. Commun., 1997, 83 RSC.
  32. T. Shiiba and M. Komiyama, Tetrahedron Lett., 1992, 33, 5571 CrossRef CAS.
  33. J. L. Van Winkle, J. D. McClure and P. H. Williams, J. Org. Chem., 1966, 31, 3300 CAS.
  34. R. Sayre, J. Am. Chem. Soc., 1955, 77, 6689 CrossRef CAS.
  35. A. M. Sargeson and G. H. Searle, Inorg. Chem., 1967, 6, 787 CrossRef CAS.
  36. F. Tafesse and R. M. Milburn, Inorg. Chim. Acta, 1987, 135, 119 CrossRef CAS.
  37. P. K. Glasoe and F. A. Long, J. Phys. Chem., 1960, 64, 188 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.