Role of lactam vs. lactim tautomers in 2(1H[hair space])-pyridone catalysis of aromatic nucleophilic substitution

(Note: The full text of this document is currently only available in the PDF Version )

Anne Loppinet-Serani, Florence Charbonnier, Christian Rolando and Ivan Huc


Abstract

3-Ethylaminocarbonyl-2(1H)-pyridone 1 and 3-ethoxycarbonyl-2(1H)-pyridone 2 have been synthesised and tested as catalysts for the aromatic nucleophilic substitution of fluoride by piperidine in 2-fluoro-5-nitrobenzonitrile 3. A kinetic model which takes into account the dimerisation of the catalysts has been developed, which allows a quantitative analysis of measured data. 3-Ethylaminocarbonyl-2(1H)-pyridone 1 exists exclusively as a lactam tautomer, either monomeric or dimeric but 3-ethoxycarbonyl-2(1H)-pyridone 2 exists as a lactim monomer, whereas its dimer exists in the lactam form. Despite such differences, these two compounds exhibit similar catalytic efficiencies for the reaction studied, suggesting that lactim and lactam tautomers have comparable efficiencies in tautomeric catalysis.


References

  1. C. G. Swain and J. F. Brown Jr., J. Am. Chem. Soc., 1952, 74, 2538 CrossRef CAS .
  2. (a) P. R. Rony, J. Am. Chem. Soc., 1969, 91, 6090 CrossRef CAS  and references cited therein; (b) H. T. Openshaw and N. Whittaker, J. Chem. Soc., C, 1969 Search PubMed ; (c) C.-W. Su and J. W. Watson, J. Am. Chem. Soc., 1974, 96, 1854 CrossRef CAS ; (d) F. Pietra and D. Vitali, Tetrahedron Lett., 1966, 46, 5701 CrossRef .
  3. W. P. Jencks, Catalysis in Chemistry and Enzymology, Dover Publications, Inc., New York, 1987, 200 Search PubMed .
  4. (a) K.-Å. Engdahl, H. Bivehed, P. Ahlberg and W. H. Saunders Jr., J. Am. Chem. Soc., 1983, 105, 4767 CrossRef CAS ; (b) M. Kusuya, A. Noguchi and T. Okuda, Bull. Chem. Soc. Jpn., 1984, 57, 3461 CAS .
  5. For a survey of alkylation methods, see: D. L. Comins and G. Jianhua, Tetrahedron, 1994, 35, 2819 Search PubMed  and references cited therein.
  6. M. Gallant, M. T. P. Viet and J. D. Wuest, J. Am. Chem. Soc., 1991, 113, 721 CrossRef CAS .
  7. (a) R. S. Brown, A. Tse and J. C. Veredas, J. Am. Chem. Soc., 1980, 102, 1174 CrossRef CAS ; (b) A. Sygula, J. Chem. Res. (S), 1989, 56 Search PubMed .
  8. P. Beak, J. B. Covington and J. M. White, J. Org. Chem., 1980, 45, 1347 CrossRef CAS .
  9. P. Beak, J. B. Covington, S. G. Smith, J. M. White and J. M. Zeigler, J. Org. Chem., 1980, 45, 1354 CrossRef CAS .
  10. (a) M. Chevrier, J. Guillerez and J.-E. Dubois, J. Chem. Soc., Perkin Trans. 2, 1983, 979 RSC ; (b) O. Bensaude, M. Chevrier and J.-E. Dubois, J. Am. Chem. Soc., 1978, 100, 7055 .
  11. T. Kitagawa, K. Matsumoto and E. Hirai, Chem. Pharm. Bull., 1978, 26, 1415 CAS .
  12. C. S. Wilcox, Frontiers in Supramolecular Organic Chemistry and Photochemistry, ed. H.-J. Schneider and H. Dürr, VCH Weinheim, New York, 1991 Search PubMed .
  13. W. L. Jorgensen and J. Pranata, J. Am. Chem. Soc., 1990, 112, 2008 CrossRef .
  14. R. E. Akpojivi, T. A. Emokpae and J. Hirst, J. Chem. Soc., Perkin Trans. 2, 1994, 443 RSC .
  15. C. F. Bernasconi and R. H. de Rossi, J. Org. Chem., 1976, 41, 44 CrossRef CAS .
  16. N. S. Nudelmann, P. M. E. Mancini, R. D. Martinez and L. R. Vottero, J. Chem. Soc., Perkin Trans. 2, 1987, 951 RSC .
  17. J. F. Bunnett and R. H. Garst, J. Am. Chem. Soc., 1965, 87, 3875 CrossRef CAS .
  18. A. Albert and J. N. Phillips, J. Chem. Soc., 1956, 1294 RSC .
  19. J. F. K. Wilshire, Aust. J. Chem., 1967, 20, 1663 CAS .
  20. J. D. Hepworth and P. Jones, Synthesis, 1974, 874 CrossRef CAS .
  21. H. Günter, NMR Spectroscopy, Wiley, New York, 1987, 113 Search PubMed .
Click here to see how this site uses Cookies. View our privacy policy here.