Combined topological and energy analysis of the annealing process in fullerene formation. Stone–Wales interconversion pathways among IPR isomers of higher fullerenes

(Note: The full text of this document is currently only available in the PDF Version )

Eiji Ōsawa, Hiroshi Ueno, Mitsuho Yoshida, Zdenek Slanina, Xiang Zhao, Minobu Nishiyama and Hidemitsu Saito


Abstract

An algorithm for finding all the possible products from consecutive generalized Stone–Wales (GSW) rearrangements of any fullerene or closed cage precursor has been developed. Combined with energy-minimization, the program provides a versatile tool for the analysis of extremely complex interconversion pathways in the annealing process of fullerene formation. This paper presents results of the following preliminary applications of the program: (1) identification of the shortest pathway from Wang’s C60 cage precursor to [60-Ih]fullerene, (2) availability of GSW cascades for a large number of sixty-carbon cage precursors leading to [60-Ih]fullerene, (3) generation of interconversion pathways among IPR isomers of higher [n]fullerenes (n = 78, 80, 82, 84, 90), and (4) enumeration of fullerene isomers. The pathways map of [84]fullerene solved the pending problem of why the high-energy isomer, [84-D2d(I)]fullerene, has been detected using a helium-labelling technique in the product mixture and confirmed by IGOR calculation: this particular isomer is the dead-end product of a downhill bypath.


References

  1. A. J. Stone and D. J. Wales, Chem. Phys. Lett., 1986, 128, 501 CrossRef CAS.
  2. (a) J.-Y. Yi and J. Bernholc, J. Chem. Phys., 1992, 96, 8634 CrossRef CAS; (b) D. E. Manolopoulos, P. W. Fowler and R. P. Ryan, J. Chem. Soc., Faraday Trans., 1992, 88, 1225 RSC; (c) P. W. Fowler, D. E. Manopoulos, G. Orlandi and F. Zerbetto, J. Chem. Soc., Faraday Trans., 1995, 91, 1421 RSC; (d) D. Mitchell, P. W. Fowler and F. Zerbetto, J. Phys. B, 1996, 29, 4895 CrossRef CAS.
  3. (a) E. Ōsawa, Z. Slanina, K. Honda and X. Zhao, Fullerene Sci. Technol., in the press Search PubMed; (b) B. R. Eggen, M. I. Heggie, G. Jungnickel, C. D. Latham, R. Jones and P. R. Briddon, Science, 1996, 272, 87 CrossRef CAS; Fullerene Sci. Technol., 1997, 5, 727 Search PubMed.
  4. (a) E. Ōsawa and K. Honda, Fullerene Sci. Technol., 1996, 4, 939 CAS; (b) H. Ueno, S. Ōsawa, E. Ōsawa and K. Takeuchi, Fullerene Sci. Technol., in the press Search PubMed.
  5. (a) T. Yu. Astakhova and G. A. Vinogradov, Fullerene Sci. Technol., in the press Search PubMed; (b) A. T. Balaban, T. G. Schmalz, H. Y. Zhu and D. J. Klein, J. Mol. Struct. (THEOCHEM), 1996, 363, 291 CrossRef CAS; (c) D. Babic, S. Bassoli, M. Casartelli, F. Cataldo, A. Graovac and B. York, J. Mol. Simul., 1995, 14, 395 Search PubMed; (d) V. H. Crespi, M. L. Cohen and A. Rubio, Phys. Rev. Lett., 1997, 79, 2093 CrossRef CAS; (e) M. Terrones and H. Terrones, Fullerene Sci. Technol., 1996, 4, 517 CAS.
  6. D. E. Manolopoulos and P. W. Fowler, in The Chemical Physics of Fullerenes 10 (and 5) Years Later, ed. W. Andreoni, Kluwer Academic, Dordrecht, 1996, p. 51 Search PubMed.
  7. M. Yoshida and E. Ōsawa, manuscript in preparation.
  8. (a) M. T. Bowers, Acc. Chem. Res., 1994, 27, 324 CrossRef CAS; (b) N. G. Gotts, G. Vonhelden and M. T. Bowers, Int. J. Mass Spectrom. Ion Processes, 1995, 150, 217 CrossRef; (c) G. von Helden, E. Porter, N. G. Gotts and M. T. Bowers, J. Phys. Chem., 1995, 99, 7707 CrossRef CAS; (d) J. M. Hunter, J. L. Fye, E. J. Roskamp and M. F. Jarrold, J. Phys. Chem., 1994, 98, 1810 CrossRef CAS; (e) K. B. Shelimov, J. M. Hunter and J. F. Jarrold, Int. J. Mass Spectrom. Ion Processes, 1994, 138, 17 CrossRef CAS; (f) J. M. Hunter and M. F. Jarrold, J. Am. Chem. Soc., 1995, 117, 10 317 CrossRef CAS; (g) see also R. L. Lagow, J. J. Kampa, H. C. Wei, S. L. Battle, J. W. Genge, D. A. Laude, C. J. Harper, R. Bau, R. C. Stevens, J. F. Haw and E. Munson, Science, 1995, 267, 362 Search PubMed.
  9. B. Plestenjak, T. Pisanski and A. Graovac, J. Chem. Inf. Comput. Sci., 1996, 36, 825 CrossRef CAS.
  10. (a) Y.-D. Gao and W. C. Herndon, J. Am. Chem. Soc., 1993, 115, 8459 CrossRef; (b) Z. Slanina and S.-L. Lee, Fullerene Sci. Technol., 1995, 3, 151 CAS; (c) M.-L. Sun, Z. Slanina and S.-L. Lee, Fullerene Sci. Technol., 1995, 3, 627 CAS; (d) B. I. Dunlap, Int. J. Quantum. Chem., 1996, 58, 123 CrossRef CAS; (e) A. Ayuela, P. W. Fowler, D. Mitchell, R. Schmidt, G. Seifert and F. Zerbetto, J. Phys. Chem., 1996, 100, 15 634 CrossRef CAS.
  11. P. v. R. Schleyer, in Cage Hydrocarbons, ed. G. Olah, Wiley, New York, 1990, ch. 1 Search PubMed.
  12. C. Ganter, in Carbocyclic Cage Compounds, ed. E. Ōsawa and O. Yonemitsu, VCH, New York, 1992, ch. 10 Search PubMed.
  13. For further connections between adamantane and fullerene, see Z. Slanina, Chem. Eng. News, February 17, 1997, p. 6 Search PubMed.
  14. (a) H. Ueno, M.Eng. Thesis, Toyohashi University of Technology, 1996; (b) M. Nishiyama, B.Eng. Thesis, Toyohashi University of Technology, 1996; (c) The GSW program has been deposited for public distribution at the Japan Chemistry Program Exchange, 1-7-12 Nishine-Nishi, Tsuchiura 300, Japan, Program No. P112. JCPE homepage, http://jcpe.chem.pcha.ac.jb/. Program N-GRAPH will also be deposited to JCPE in due course.
  15. The following conditions may be imposed: the maximum number of GSW steps to be executed (name of variable = End), the maximum allowed numbers of four-, seven-, and eight-membered rings (P4, P7, P8), the maximum allowed number of pentagons in a set of fused pentagons (Adj5), and the maximum allowed number of such a set (AdjNo). For example, only the IPR fullerenes will be searched when P4 = P7 = P8 = 0 and AdjNo = 0.
  16. D. E. Manolopoulos and P. W. Fowler, J. Chem. Phys., 1992, 96, 7603 CrossRef CAS.
  17. See Appendix for a flowchart of GSW.
  18. E. W. Godly and R. Taylor, Pure Appl. Chem., 1997, 69, 1411 CrossRef CAS.
  19. P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford University Press, Oxford, 1995 Search PubMed.
  20. (a) AM1: M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 Search PubMed; (b) PM3: J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 Search PubMed; (c) MOPAC 93 version 6.01 containing AM1 and PM3 Hamiltonians by J. J. P. Stewart was obtained from the Japan Chemistry Program Exchange, program No. P049; (d) SAM1: M. J. S. Dewar, C. Jie and J. Yu, Tetrahedron, 1993, 49, 5003 Search PubMed; (e) AMPAC program containing SAM1 method was obtained from Semichem, Inc., 7204 Mullen, Shawnee, KS 66216, USA, under license agreement.
  21. Gaussian 94 program containing 4-31G basis set was obtained from Gaussian Inc., Carnegie Office Park, Bldg. 6, Pittsburgh, PA 15106, USA, under license agreement: M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Peterson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94, Revision B,1, 1995.
  22. C. Z. Wang, C. H. Hu, C. T. Chan and K. M. Ho, J. Phys. Chem., 1992, 96, 3563 CrossRef CAS.
  23. Another paper, S. Serra, S. Sanguinetti and L. Colombo, Chem. Phys. Lett., 1994, 225, 191 Search PubMed provides an isomer of 5/6 C60 having abutted pentagons, which could be transformed into buckminsterfullerene in four exothermic steps. Details of analysis are given in ref. 14(a).
  24. E. Ōsawa, Z. Slanina, X. Zhao, T. Maksumoto and S. Marayama, submitted for publication in Science.
  25. (a) K. Kikuchi, N. Nakahara, T. Wakabayashi, S. Suzuki, H. Shiromaru, Y. Miyake, K. Saito, I. Ikemoto, M. Kainosho and Y. Achiba, Nature, 1992, 357, 142 CrossRef CAS; (b) Y. Achiba, K. Kikuchi, Y. Aihara, T. Wakabayashi, Y. Miyake and M. Kainosho, in Science and Technology of Fullerene Materials, ed. P. Bernier, D. S. Bethune, L. Y. Chiang, T. W. Ebbesen, R. M. Metzger and J. W. Mintmire, Materials Research Society, Pittsburgh, 1995, p. 3 Search PubMed.
  26. (a) D. E. Manolopoulos, D. R. Woodall and P. W. Fowler, J. Chem. Soc., Faraday Trans., 1992, 88, 2427 RSC; (b) J. Cioslowski, Electronic Structure Calculations on Fullerenes and Their Derivatives, Oxford University Press, Oxford, 1995 Search PubMed; (c) M. Yoshida, M. Fujita, H. Goto and E. Ōsawa, Electron. J. Theor. Chem., 1996, 1, 151 Search PubMed.
  27. Z. Slanina, J.-P. Francois, D. Bakowies and W. Thiel, J. Mol. Struct. (THEOCHEM), 1993, 279, 213 CrossRef.
  28. (a) M. Saunders, R. J. Cross, H. A. Jimenez-Vazquez, R. Shimshi and A. Khong, Science, 1996, 271, 1693 CrossRef CAS; (b) M. Saunders, H. A. Jimenez-Vazquez, W. E. Billups, C. Gesenberg, A. Gonzalez, W. Luo, R. C. Haddon, F. Diederich and A. Herrmann, J. Am. Chem. Soc., 1995, 117, 9305 CrossRef CAS.
  29. F. H. Hennrich, R. H. Michel, A. Fischer, S. Riechard-Schneider, S. Gilb, M. M. Kappes, D. Fuchs, M. Brk, K. Kobayashi and S. Nagase, Angew. Chem., Int. Ed. Engl., 1996, 35, 1732 CrossRef.
  30. (a) M.-L. Sun, Z. Slanina, S.-L. Lee, F. Uhlik and L. Adamowicz, Chem. Phys. Lett., 1995, 246, 66 CrossRef CAS; (b) Z. Slanina, X. Zhao and E. Ōsawa, in Computational Studies of New Materials, ed. D. A. Jelski and T. F. George, World Science, Singapore, in the press Search PubMed.
  31. Y. Achiba, personal communication.
  32. Z. Slanina, S.-L. Lee, K. Kobayashi and S. Nagase, J. Mol. Struct. (THEOCHEM), 1995, 339, 89 CrossRef CAS.
  33. Z. Slanina, J.-P. Francois, M. Kolb, D. Bakowies and W. Thiel, Fullerene Sci. Technol., 1993, 1, 221 CAS.
  34. M. Bühl and C. van Wüllen, Chem. Phys. Lett., 1995, 247, 63 CrossRef.
  35. R. Taylor, G. J. Langley, A. G. Avent, T. J. S. Dennis, H. Kroto and D. R. M. Walton, J. Chem. Soc., Perkin Trans. 2, 1993, 1024 Search PubMed.
  36. S. Hino, K. Umishita, K. Iwasaki, T. Miyazaki, K. Kikuchi and Y. Achiba, Phys. Rev. B, 1996, 53, 7496 CrossRef CAS.
  37. Z. Slanina, X. Zhao, S.-L. Lee and E. Ōsawa, Chem. Phys., 1997, 219, 193 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.