Elimination mechanisms in the anilinolysis of sulfamoyl chlorides in chloroform and acetonitrile

(Note: The full text of this document is currently only available in the PDF Version )

William J. Spillane, Francis A. McHugh and Padraig O. Burke


Abstract

The kinetics of the reaction of various sulfamoyl chlorides, R1R2NSO2Cl (R1 = Ph, Me, c-C6H11, But, R2 = H and R1 = R2 = Me and R1 = R2 = PhCH2) with anilines in chloroform and acetonitrile have been studied. Reaction is first order in both chloride and aniline and pseudo first order and second order rate constants have been determined for various chlorides and para- and meta-substituted anilines. Hammett ρ values vary from –4.76 to –2.63 for varying XC6H4NH2 depending on the halide, X. Substituents in XC6H4NHSO2Cl have only small effects on the rates. There is a ca. 106-fold rate difference between PhNHSO2Cl and (PhCH2)2NSO2Cl reacting with p-anisidine in chloroform at 25 °C. This finding, coupled with the observation of hydrogen/deuterium isotope effects, supports the operation of an elimination mechanism involving an N-sulfonylamine, [PhN[double bond, length half m-dash]SO2], as a transient species. In chloroform an E2-type mechanism is suggested, while in acetonitrile the activation parameters (ΔH, ΔS) may indicate a more E1cB-like E2 mechanism.


References

  1. I. M. Gordon, H. Maskill and M.-F. Ruasse, Chem. Soc. Rev., 1989, 18, 123 RSC.
  2. G. A. Benson and W. J. Spillane, Chem. Rev., 1989, 80, 151; G. A. Benson, W. J. Spillane, Sulphamic Acid and Derivatives, in The Chemistry of Sulphonic Acids, Esters and their Derivatives, eds. S. Patai and Z. Rappoport, Wiley, 1991, ch. 22, pp. 947–1036 Search PubMed.
  3. S. D. McDermott and W. J. Spillane, Org. Prep. Proced. Int., 1984, 16, 49 CrossRef CAS.
  4. (a) H. K. Hall, J. Am. Chem. Soc., 1956, 78, 1450 CrossRef CAS; (b) H. K. Hall and C. H. Lueck, J. Org. Chem., 1963, 28, 2818 CrossRef CAS; (c) O. Rogne, J. Chem. Soc. B, 1969, 663 RSC; (d) E. C. F. Ko and R. E. Robertson, J. Am. Chem. Soc., 1972, 94, 573 CrossRef CAS; (e) E. C. F. Ko and R. E. Robertson, Can. J. Chem., 1972, 50, 946 CAS; (f) B. C. Lee and I. Lee, Taehan Hwakakhee Chi, 1980, 24, 342 (Chem. Abstr., 1981, 94, 102 400) Search PubMed; (g) I. Lee and S. C. Kim, J. Korean Chem. Soc., 1973, 17, 406 Search PubMed.
  5. A. Williams and K. T. Douglas, Chem. Rev., 1975, 75, 627 CrossRef CAS.
  6. S. Thea and A. Williams, J. Chem. Soc., Perkin Trans. 2, 1981, 72 RSC and references therein.
  7. (a) J. F. King and S. Skoneiczny, Tetrahedron Lett., 1987, 28, 5001 CrossRef CAS; (b) J. F. King, Acc. Chem. Res., 1975, 8, 10 CrossRef CAS.
  8. K. T. Douglas and A. Williams, J. Chem. Soc., Perkin Trans. 2, 1974, 1727 RSC.
  9. A. V. Willi, Helv. Chim. Acta, 1956, 39, 46 CAS.
  10. J. A. Mastrukova, Yu. N. Sheiner, I. K. Kuznetsova, E. M. Peresleni, T. B. Sakharova and M. I. Kabachnik, Tetrahedron, 1963, 19, 357 CrossRef.
  11. W. J. Spillane, G. Hogan and P. McGrath, J. Phys. Org. Chem., 1995, 8, 610 CrossRef CAS.
  12. I. Lee, H. K. Kang and H. W. Lee, J. Am. Chem. Soc., 1987, 109, 7472 CrossRef CAS.
  13. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, VCH, Weinheim, 2nd edn., 1988, Table A-1, pp. 408–410 Search PubMed.
  14. W. L. Matier, W. T. Comer and D. Deitchman, J. Med. Chem., 1972, 15, 538 CrossRef CAS.
  15. J. R. Gandler and W. P. Jencks, J. Am. Chem. Soc., 1982, 104, 1937 CrossRef CAS.
  16. A. G. Cook and G. W. Mason, J. Inorg. Nucl. Chem., 1966, 28, 2579 CAS.
  17. P. D. Bolton and F. M. Hall, J. Chem. Soc. B, 1969, 259 RSC; P. D. Bolton and F. M. Hall, J. Chem. Soc. A, 1969, 1212 RSC.
  18. G. M. Atkins and E. M. Burgess, J. Am. Chem. Soc., 1972, 94, 6135 CrossRef CAS.
  19. J. A. Kloek and K. L. Leschinsky, J. Org. Chem., 1976, 41, 4028 CrossRef CAS.
  20. G. Weiss and G. Schulze, Liebigs Ann. Chem., 1969, 729, 40 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.