Monoaza-analogs[hair space]† of trimethylenemethane. Isoelectronic similarities and differences

(Note: The full text of this document is currently only available in the PDF Version )

Jiabo Li, Sharon E. Worthington and Christopher J. Cramer


Abstract

Calculations employing multireference second-order perturbation theory and density functional theory have been carried out for a series of monoaza-analogs of trimethylenemethane (TMM). Trimethyleneammonium is predicted to have multiplet splittings very similar to TMM. Iminoallyl, also isoelectronic with TMM but with heteroatomic perturbation at a terminal position, is a ground-state triplet like TMM but its corresponding closed-shell singlet state is stabilized relative to the triplet by about 7 kcal mol–1. Protonation of iminoallyl generates iminiumdimethylenemethane and the latter system has a singlet ground state in violation of Ovchinnikov’s rule. Aqueous medium effects on the singlet and triplet states of iminiumdimethylenemethane are calculated to reduce the singlet–triplet splitting by 1.6 kcal mol–1 using Solvation Model 5.4/AM1.


References

  1. D. A. Dougherty, Acc. Chem. Res., 1991, 24, 88 CrossRef CAS.
  2. A. Rajca, Chem. Rev., 1994, 94, 871 CrossRef CAS.
  3. J. A. Berson, Acc. Chem. Res., 1997, 30, 238 CrossRef CAS.
  4. F. Hund, Z. Phys., 1928, 51, 759 CAS.
  5. C. A. Coulson, J. Chim. Phys., 1948, 45, 243 CAS.
  6. H. C. Longuet-Higgins, J. Chem. Phys., 1950, 18, 265 CrossRef CAS.
  7. P. Dowd, J. Am. Chem. Soc., 1966, 88, 2587 CrossRef CAS.
  8. R. J. Baseman, D. W. Pratt, M. Chow and P. Dowd, J. Am. Chem. Soc., 1976, 98, 5726 CrossRef CAS.
  9. P. G. Wenthold, J. Hu, R. R. Squires and W. C. Lineberger, J. Am. Chem. Soc., 1996, 118, 475 CrossRef CAS.
  10. C. J. Cramer and B. A. Smith, J. Phys. Chem., 1996, 100, 9664 CrossRef CAS.
  11. P. Dowd, Acc. Chem. Res., 1972, 5, 242 CrossRef CAS.
  12. J. A. Berson, Acc. Chem. Res., 1978, 11, 446 CrossRef CAS.
  13. T. M. Bregant, J. Groppe and R. D. Little, J. Am. Chem. Soc., 1994, 116, 3635 CrossRef CAS.
  14. W. T. Borden and E. R. Davidson, J. Am. Chem. Soc., 1977, 99, 4587 CrossRef CAS.
  15. A. A. Ovchinnikov, Theor. Chim. Acta, 1978, 47, 297 CrossRef CAS.
  16. W. T. Borden and E. R. Davidson, Acc. Chem. Res., 1981, 14, 69 CrossRef CAS.
  17. W. T. Borden, in Diradicals, ed. W. T. Borden, Wiley-Interscience, New York, 1982, p. 1 Search PubMed.
  18. P. M. Lahti, A. R. Rossi and J. A. Berson, J. Am. Chem. Soc., 1985, 107, 2273 CrossRef CAS.
  19. T. P. Radhakrishnan, Tetrahedron Lett., 1991, 32, 4601 CrossRef CAS.
  20. W. T. Borden, Mol. Cryst. Liq. Cryst., 1993, 232, 195 Search PubMed.
  21. S. K. Silverman and D. A. Dougherty, J. Phys. Chem., 1993, 97, 13 273 CrossRef CAS.
  22. W. T. Borden, H. Iwamura and J. A. Berson, Acc. Chem. Res., 1994, 27, 109 CrossRef CAS.
  23. A. S. Ichimura, N. Koga and H. Iwamura, J. Phys. Org. Chem., 1994, 7, 207 CAS.
  24. P. Du, D. A. Hrovat and W. T. Borden, J. Am. Chem. Soc., 1989, 111, 3773 CrossRef CAS.
  25. H. M. R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1984, 23, 1 CrossRef.
  26. J. Mann, Tetrahedron, 1986, 42, 4611 CrossRef CAS.
  27. Y. Osamura, W. T. Borden and K. Morokuma, J. Am. Chem. Soc., 1984, 106, 5112 CrossRef CAS.
  28. M. B. Coolidge, K. Yamashita, K. Morokuma and W. T. Borden, J. Am. Chem. Soc., 1990, 112, 1751 CrossRef CAS.
  29. T. H. Dunning, J. Chem. Phys., 1989, 90, 1007 CrossRef CAS.
  30. A. Becke, J. Chem. Phys., 1986, 84, 4524 CrossRef CAS.
  31. J. P. Perdew, K. Burke and Y. Wang, Phys. Rev. B, 1996, 54, 6533 CrossRef.
  32. The experimental value quoted from 9 includes zero-point vibrational energy, which is calculated at the CASPT2 level to reduce the electronic multiplet splitting from 19.1 to 17.5 kcal mol–1, i.e., in reasonably close agreement with experiment (see ref. 10).
  33. K. Andersson, P.-Å. Malmqvist, B. O. Roos, A. J. Sadlej and K. Wolinski, J. Phys. Chem., 1990, 94, 5483 CrossRef CAS.
  34. K. Andersson, P.-Å. Malmqvist and B. O. Roos, J. Chem. Phys., 1992, 96, 1218 CrossRef CAS.
  35. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef.
  36. J. C. Slater, Phys. Rev., 1951, 81, 385 CrossRef CAS.
  37. T. Ziegler, A. Rauk and E. J. Baerends, Theor. Chim. Acta, 1977, 43, 261 CrossRef CAS.
  38. L. Noodleman, D. Post and E. J. Baerends, Chem. Phys., 1982, 64, 159 CrossRef CAS.
  39. C. J. Cramer, F. J. Dulles, D. J. Giesen and J. Almlöf, Chem. Phys. Lett., 1995, 245, 165 CrossRef CAS.
  40. M. H. Lim, S. E. Worthington, F. J. Dulles and C. J. Cramer, in Density-Functional Methods in Chemistry, eds. B. B. Laird, R. B. Ross and T. Ziegler, American Chemical Society, Washington, DC, 1996, p. 402 Search PubMed.
  41. C. C. Chambers, G. D. Hawkins, C. J. Cramer and D. G. Truhlar, J. Phys. Chem., 1996, 100, 16 385 CrossRef CAS.
  42. J. W. Storer, D. J. Giesen, C. J. Cramer and D. G. Truhlar, J. Comput.-Aid. Mol. Des., 1995, 9, 87 Search PubMed.
  43. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  44. K. Andersson, M. R. A. Blomberg, M. P. Fülscher, G. Karlström, V. Kellö, R. Lindh, P.-Å. Malmqvist, J. Noga, J. Olsen, B. O. Roos, A. J. Sadlej, P. E. M. Siegbahn, M. Urban and P.-O. Widmark, MOLCAS-3; University of Lund, Sweden, 1994.
  45. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN 94 RevD.1, Gaussian Inc., Pittsburgh, PA, 1995.
  46. G. D. Hawkins, G. C. Lynch, D. J. Giesen, I. Rossi, J. W. Storer, D. A. Liotard, C. J. Cramer and D. G. Truhlar, QCPE Bull., 1996, 16, 11 Search PubMed.
  47. R. O. Jones, J. Chem. Phys., 1985, 82, 325 CrossRef CAS.
  48. E. Radzio and D. R. Salahub, Int. J. Quantum. Chem., 1986, 29, 241 CAS.
  49. Density Functional Methods in Chemistry, eds. J. Labanowski and J. Andzelm, Springer, New York, 1991 Search PubMed.
  50. G. L. Gutsev and T. Ziegler, J. Phys. Chem., 1991, 95, 7220 CrossRef CAS.
  51. C. W. Murray, N. C. Handy and R. D. Amos, J. Chem. Phys., 1993, 98, 7145 CrossRef CAS.
  52. N. Russo, E. Sicilia and M. Toscano, Chem. Phys. Lett., 1993, 213, 245 CrossRef CAS.
  53. H. Jacobsen and T. Ziegler, J. Am. Chem. Soc., 1994, 116, 3667 CrossRef CAS.
  54. A. J. Arduengo, H. Bock, H. Chen, M. Denk, D. A. Dixon, J. C. Green, W. A. Herrmann, N. L. Jones, M. Wagner and R. West, J. Am. Chem. Soc., 1994, 116, 6641 CrossRef.
  55. A. J. Arduengo, H. V. Rasika Dias, D. A. Dixon, R. L. Harlow, W. T. Klooster and T. F. Koetzle, J. Am. Chem. Soc., 1994, 116, 6812 CrossRef.
  56. C. J. Cramer, F. J. Dulles, J. W. Storer and S. E. Worthington, Chem. Phys. Lett., 1994, 218, 387 CrossRef CAS.
  57. C. J. Cramer, F. J. Dulles and D. E. Falvey, J. Am. Chem. Soc., 1994, 116, 9787 CrossRef CAS.
  58. C. J. Cramer and S. E. Worthington, J. Phys. Chem., 1995, 99, 1462 CrossRef CAS.
  59. S. Matzinger, T. Bally, E. V. Patterson and R. J. McMahon, J. Am. Chem. Soc., 1996, 118, 1535 CrossRef CAS.
  60. B. A. Smith and C. J. Cramer, J. Am. Chem. Soc., 1996, 118, 5490 CrossRef CAS.
  61. S. E. Worthington and C. J. Cramer, J. Phys. Org. Chem., 1997, 10, 755 CrossRef CAS.
  62. F. A. Cotton, Chemical Applications of Group Theory, 2nd edn., Wiley-Interscience, New York, 1971 Search PubMed.
  63. P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 3, 864.
  64. O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B, 1976, 13, 4274 CrossRef CAS (erratum 15, 6006).
  65. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys., 1989, 61, 689 CrossRef CAS.
  66. A. P. West, S. K. Silverman and D. A. Dougherty, J. Am. Chem. Soc., 1996, 118, 1452 CrossRef.
  67. A. S. Ichimura, P. M. Lahti and A. R. Matlin, J. Am. Chem. Soc., 1990, 112, 2868 CrossRef CAS.
  68. A referee has pointed out that one might expand this valence bond analysis somewhat by considering the varying substituent group to have a perturbational interaction with the allyl cation. The symmetry of the perturbing group p orbital (b1) requires it to mix with the lowest (and highest) energy π orbitals of the allyl cation When the allyl cation is in its 1A1 ground state, its π1 orbital is doubly occupied, and the mixing is a destabillizing four-electron interaction. If the resonance (mixing) energy is large enough, however, it is energetically advantageous to promote an electron from π1 to π2 in the allyl cation, generating the 3B2 state, thereby making the mixing event a stabilizing three-electron interaction. TMM's triplet ground state is thus rationalized by invoking a resonance interaction that is larger than the promotion energy in the allyl cation. Of course, both of these VB analyses are more useful qualitatively than quantitatively, and it is worth emphasizing that their utility derves not from any formal rigor but rather from their ability to speak to chemical intuition..
Click here to see how this site uses Cookies. View our privacy policy here.