Stereodynamics of ring and nitrogen inversion in spiroheterocycles. Conformational analysis of N-methylspiro[morpholine-3,2′-adamantane] and N-methylspiro[piperidine-2,2′-adamantane] using NMR spectroscopy and theoretical calculations

(Note: The full text of this document is currently only available in the PDF Version )

Antonios Kolocouris, Emmanuel Mikros and Nicolas Kolocouris


Abstract

Adamantane forces the N-methyl group of N-methylspiro[morpholine-3,2′-adamantane] 1 and N-methylspiro[piperidine-2,2′-adamantane] 2 to adopt an axial orientation and to undergo a slow enantiomerization as depicted by dynamic 1H and 13C NMR spectroscopy. The observed enantiomerization freezes below 0 °C as evidenced by the fully resolved protons and carbons of adamantane in NMR spectra. The observed resonances are interpreted using 2D NMR spectroscopy. Interconversion between the two enantiomeric forms is demonstrated by exchange spectroscopy (EXSY). The activation energy at the coalescence point is calculated from the 13C NMR spectra and found to be 14.3 and 15.2 kcal mol–1 for molecules 1 and 2, respectively. Theoretical calculations suggest a mechanism of interconversion where the significant transition state is the one separating two twist-boat forms.


References

  1. (a) I. D. Blackburne, A. R. Katritzky and Y. Takeuchi, Acc. Chem. Res., 1975, 8, 300 CrossRef CAS; (b) J. B. Lambert and S. I. Featherman, Chem. Rev., 1975, 75, 611 CrossRef CAS; (c) T. A. Crabb and A. R. Katritzky, Adv. Heter. Chem., 1984, 36, 1 Search PubMed; (d) for a condensed discussion, see S. Profeta and N. L. Allinger, J. Am. Chem. Soc., 1985, 107, 1907 Search PubMed; (e) J. B. Lambert and Y. Takeuchi, Acyclic Organonitrogen Stereodynamics, VCH, New York, 1992 Search PubMed; (f) J. B. Lambert and Y. Takeuchi, Cyclic Organonitrogen Stereodynamics, VCH, New York, 1992 Search PubMed.
  2. J. H. Brown and C. H. Bushweller, J. Am. Chem. Soc., 1992, 114, 8153 CrossRef CAS; J. E. Anderson, D. Casarini and L. Lunazzi, J. Chem. Soc., Perkin Trans. 2, 1990, 1791 RSC.
  3. D. A. Forsyth, W. Zhang and J. A. Hanley, J. Org. Chem., 1996, 61, 1284 CrossRef CAS; C. H. Bushweller, J. H. Brown, C. M. DiMeglio, G. W. Gribble, J. T. Eaton, C. S. LeHoullier and E. R. Olson, J. Org. Chem., 1995, 60, 268 CrossRef CAS; S. F. Nelsen, J. T. Ippoliti, T. B. Frigo and P. A. Petillo, J. Am. Chem. Soc., 1989, 111, 1776 CrossRef CAS.
  4. In cyclohexane the transition state connecting the chair and twistboat conformations was found to be of C2 and C1 geometry: D. A. Dixon and A. Komornicki, J. Phys. Chem., 1990, 94, 5630 Search PubMed.
  5. (a) N. Kolocouris, A. Kolocouris, G. B. Foscolos, G. Fytas, J. Neyts, E. Padalko, J. Balzarini, R. Snoeck, G. Andrei and E. De Clercq, J. Med. Chem., 1996, 39, 3307 CrossRef CAS; (b) N. Kolocouris, G. B. Foscolos, A. Kolocouris, P. Marakos, N. Pouli, G. Fytas, S. Ikeda and E. De Clercq, J. Med. Chem., 1994, 37, 2896 CrossRef CAS; (c) A. Kolocouris, Ph.D. Thesis, University of Athens, 1995.
  6. G. Fytas, G. Stamatiou, G. B. Foscolos, A. Kolocouris, N. Kolocouris, M. Witvrouw, C. Pannecouque and E. De Clercq, Biorg. Med. Chem. Lett., 1997, 1887 Search PubMed.
  7. C. L. Perrin and T. J. Dwyer, Chem. Rev., 1990, 90, 935 CrossRef CAS.
  8. For 1H NMR spectroscopy of adamantane derivatives, see (a) R. C. Fort and P. v. R. Schleyer, J. Org. Chem., 1965, 30, 789 CrossRef; (b) F. W. van Deursen and P. K. Korver, Tetrahedron Lett., 1967, 3923 CrossRef CAS; (c) F. W. van Deursen and A. C. Udding, Recl. Trav. Chim. Pays-Bas, 1968, 87, 1243 CAS; (d) F. W. van Deursen and J. Bakker, Tetrahedron, 1971, 4593 CrossRef CAS; (e) D. Hofner, S. A. Lesko and G. Binsch, Org. Magn. Res., 1978, 11, 79 Search PubMed; (f) R. J. Abraham and J. Fisher, Magn. Reson. Chem., 1985, 23, 856 CAS; (g) R. J. Abraham and J. Fisher, Magn. Reson. Chem., 1985, 23, 866.
  9. For 13C NMR spectroscopy of adamantane derivatives, see (a) T. Pehk, E. Lippmaa, V. V. Sevostjanova, M. Krayuschkin and A. I. Tarasova, Org. Magn. Reson., 1971, 3, 783 Search PubMed; (b) G. E. Maciel, H. C. Dorn, R. L. Greene, W. A. Kleschick, M. R. Peterson and G. H. Wahl, Org. Magn. Reson., 1974, 6, 178 Search PubMed; (c) H. Duddeck and W. Dietrich, Tetrahedron Lett., 1975, 2925 CrossRef CAS; (d) H. Duddeck, Org. Magn. Reson., 1975, 171 Search PubMed; (e) H. Duddeck and P. Wolff, Org. Magn. Reson., 1976, 8, 593 Search PubMed; (f) H. Duddeck, F. Hollowood, A. Karim and M. A. McKervey, J. Chem. Soc., Perkin Trans. 2, 1979, 360 RSC; (g) H. Duddeck and Md. R. Islam, Org. Magn. Reson., 1981, 16, 32 Search PubMed; (h) D. M. Doddrell, D. T. Pegg and M. R. Bendall, J. Magn. Reson., 1982, 48, 323; (i) M. R. Bendall and D. T. Pegg, J. Magn. Reson., 1983, 53, 272 CAS; (j) J. S. Lomas, C. Cordier, S. Briand and J. Vaissermann, J. Chem. Soc., Perkin Trans. 2, 1996, 871 RSC.
  10. For the straightforward assignment of the 13C NMR chemical shifts of some 1- and 2- substituted and 2,2-disubstituted adamantanes, see V. V. Krishnamurthy, P. S. Iyer and G. A. Olah, J. Org. Chem., 1983, 48, 3373 Search PubMed.
  11. A. J. Jones, C. P. Beeman, M. U. Hasan, A. F. Casy and M. M. A. Hassan, Can. J. Chem., 1976, 54, 126 CAS.
  12. The orientation of the 4′, 9′ and 8′, 10′ protons is referred to the 1′-2′-3′-4′-5′-9′ and 1′-2′-3′-10′-7′-8′- adamantane rings, respectively, as has been described in ref. 8b.
  13. (a) F. A. L. Anet and M. Kopelvich, J. Am. Chem. Soc., 1986, 108, 2109 CrossRef CAS; (b) F. W. Vierhapper and E. L. Eliel, J. Org. Chem., 1975, 40, 2734 CrossRef CAS; (c) E. L. Eliel, F. W. Vierhapper and G. Z. Juaristi, Tetrahedron Lett., 1975, 4339 CrossRef CAS.
  14. E. L. Eliel and K. M. Pietrusiewicz, Top. C-13 NMR Spectrosc., 1979, 3, 171 Search PubMed.
  15. E. L. Eliel, W. F. Bailey, L. D. Kopp, R. L. Willer, D. M. Grant, R. Bertrand, K. A. Christensen, D. K. Dalling, M. W. Duch, E. Wenkert, F. M. Schell and D. W. Cochran, J. Am. Chem. Soc., 1975, 97, 322 CrossRef CAS and references therein.
  16. For similar shifts, see E. L. Eliel and F. W. Vierhapper, J. Org. Chem., 1976, 41, 199 Search PubMed; E. L. Eliel, D. Kandasamy, C.-Y. Yen and K. D. Hargrave, J. Am. Chem. Soc., 1980, 102, 3698 CrossRef CAS.
  17. For a discussion related to the interconversion barriers of many simple nitrogen heterocycles, see A. R. Katritzky, R. C. Patel and F. G. Ridell, Angew. Chem., Int. Ed. Engl., 1981, 20, 521 Search PubMed.
  18. F. A. L. Anet, I. Yavari, I. J. Ferguson, A. R. Katritzky, M. Moreno-Manas and M. J. T. Robinson, J. Chem. Soc., Chem. Commun., 1976, 399 RSC.
  19. R. W. Alder, E. Heilbroner, E. Honegger, A. B. McEwen, R. E. Moss, E. Olefirowicz, P. A. Petillo, R. B. Sessions, G. R. Weisman, J. M. White and Z.-Z. Yang, J. Am. Chem. Soc., 1993, 115, 6580 CrossRef CAS.
  20. (a) F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson and W. C. Still, J. Comput. Chem., 1990, 11, 440 CrossRef CAS the Monte Carlo method implemented in the Macromodel software is described in detail in G. Chang, W. C. Guida and W. C. Still, J. Am. Chem. Soc., 1989, 111, 4379 Search PubMed; M. Saunders, K. N. Houk, Y.-D. Wu, W. C. Still, M. Lipton, G. Chang and W. C. Guida, J. Am. Chem. Soc., 1990, 112, 1419 CrossRef CAS; (b) Hyperchem is developed and licenced from Hypercube Inc. The MM+ force field used in this software for molecular mechanics calculations is an extension of MM2 (N. L. Allinger, J. Am. Chem. Soc., 1977, 99, 8127, using the MM2 ( 1991) parameters and atom types with the 1977 functional form. Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.