Diarylbis(acylamino)spiro-λ4-sulfanes and cyclic acylaminosulfonium salts. A kinetic study of equilibrium and hydrolysis reactions

(Note: The full text of this document is currently only available in the PDF Version )

Tibor Ádám, Ferenc Ruff, István Kapovits, Dénes Szabó and Árpád Kucsman


Abstract

Kinetics for the hydrolysis of diarylbis(acylamino)spiro-λ4-sulfanes 3a–e and 9 and precursor acylaminosulfonium salts 5a–e and 8 both leading to sulfoxides 6a–e and 10, respectively, have been studied under pseudo-first-order conditions in dioxane–water mixtures. Medium, substituent (ρ+ –0.44) and solvent isotope effects (kH2O/kD2O ≈2) indicate that the cleavage of one of the S–N bonds and a simultaneous proton-transfer from H2O to the leaving carbamoyl group take place in the rate-determining step of the hydrolysis of spiro-λ4-sulfanes 3a–e. The acylaminosulfonium and OH ion intermediates formed together are converted to sulfoxides 6a–e in fast steps. The hydrolysis of acylaminosulfonium salts shows deviation from first-order kinetics at the starting period of the reaction, which may be ascribed to an equilibrium formation of spiro-λ4-sulfanes. The equilibrium between 3a and 5a has been studied by spectroscopic methods, and K35 5 × 10–7 mol dm–3 was obtained in 70[hair space]:[hair space]30 (v/v) dioxane–water, at 25 °C. The equilibrium is shifted towards the acylaminosulfonium salts as the acidity of the solvent increases with the progress of the hydrolysis, or when acid is added to the mixture. In the case of hydrolysis of 5a–e and 8 the medium, substituent and deuterium solvent isotope effects (kH2O/kD2O ≈4.3) as well as the general base catalytic effect of acetate ions suggest that a nucleophilic attack of water on the sulfonium centre occurs in the rate-determining step with the cleavage of one of the OH bonds in water and with the formation of a hydroxy(acylamino)-λ4-sulfane. Acylaminosulfonium salt 12, having a sterically hindered reaction centre, undergoes hydrolysis only with more nucleophilic OH ions. Relative reactivities and different ring-size effects observed for bis(acyloxy)-, (acyloxy)(acylamino)- and bis(acylamino)-spiro-λ4-sulfanes and cyclic acylaminosulfonium salts are compared and interpreted.


References

  1. I. Kapovits and A. Kálmán, J. Chem. Soc., Chem. Commun., 1971, 649 Search PubMed; A. Kálmán, K. Sasvári and I. Kapovits, Acta Crystallogr., Sect. B, 1973, 29, 355 CrossRef CAS; I. Kapovits, J. Rábai, D. Szabó, K. Czakó, Á. Kucsman, Gy. Argay, V. Fülöp, A. Kálmán, T. Koritsánszky and L. Párkányi, J. Chem. Soc., Perkin Trans. 2, 1993, 847 RSC.
  2. L. J. Adzima, Chian C. Chiang, I. C. Paul and J. C. Martin, J. Am. Chem. Soc., 1978, 100, 953 CrossRef CAS.
  3. D. Szabó, M. Kuti, I. Kapovits, J. Rábai, Á. Kucsman, Gy. Argay, M. Czugler, A. Kálmán and L. Párkányi, J. Mol. Struct., 1997, 415, 1 CrossRef CAS.
  4. D. Szabó, I. Kapovits, Á. Kucsman, P. Huszthy, Gy. Argay, M. Czugler, V. Fülöp, A. Kálmán, T. Koritsánszky and L. Párkányi, J. Mol. Struct., 1993, 300, 23 CrossRef CAS.
  5. E. Vass, F. Ruff, I. Kapovits, J. Rábai and D. Szabó, J. Chem. Soc., Perkin Trans. 2, 1993, 855 RSC.
  6. E. Vass, F. Ruff, I. Kapovits, D. Szabó and Á. Kucsman, J. Chem. Soc., Perkin Trans. 2, 1997, 2061 RSC.
  7. Á. Kucsman and I. Kapovits, in Organic Sulfur Chemistry: Theoretical and Experimental Advances, ed. F. Bernardi, I. G. Csizmadia and A. Mangini, Elsevier, Amsterdam, 1985, pp. 185–245 Search PubMed.
  8. J. C. Martin and T. M. Balthazor, J. Am. Chem. Soc., 1977, 99, 152 CrossRef CAS.
  9. E. Vilsmaier and W. Sprügel, Tetrahedron Lett., 1972, 625 CrossRef CAS; J. A. Franz and J. C. Martin, J. Am. Chem. Soc., 1975, 97, 583 CrossRef CAS; G. F. Koser, P. B. Kokil and M. Shah, Tetrahedron Lett., 1987, 28, 5431 CrossRef CAS.
  10. D. Szabó, T. Ádám and I. Kapovits, Sulfur Lett., 1997, 21, 21 Search PubMed and refs. therein.
  11. T. M. Krygowski, P. K. Wrona, U. Zielkowska and C. Reichardt, Tetrahedron, 1985, 41, 4519 CrossRef CAS; C. Reichardt, Chem. Rev., 1994, 94, 2319 CrossRef CAS; H. Langhalls, Angew. Chem., Int. Ed. Engl., 1982, 28, 724 CrossRef.
  12. C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165 CrossRef CAS.
  13. A. Demeter, B. László and T. Bérces, Ber. Bunsenges., Phys. Chem., 1988, 92, 1478 Search PubMed; A. Demeter and T. Bérces, J. Phys. Chem., 1991, 95, 1228 CrossRef CAS.
  14. T. Higuchi and K.-H. Gensch, J. Am. Chem. Soc., 1966, 88, 3874, 5486 CrossRef CAS; K.-H. Gensch, I. H. Pitman and T. Higuchi, J. Am. Chem. Soc., 1968, 90, 2096 CAS.
  15. S. Tamagaki, M. Mizuno, H. Yoshida, H. Hirota and S. Oae, Bull. Chem. Soc. Jpn., 1971, 44, 2456 CAS; R. Curci, F. DiFuria, A. Levi and G. Scorrano, J. Chem. Soc., Perkin Trans. 2, 1975, 408 RSC.
  16. R. A. Hayes and J. C. Martin, in Organic Sulfur Chemistry: Theoretical and Experimental Advances, ed. F. Bernardi, I. G. Csizmadia and A. Mangini, Elsevier, Amsterdam, 1985, pp. 408–483 Search PubMed.
  17. D. D. Perrin, L. F. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, 2nd edn., 1980 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.