Radical cation mechanism of aromatic halogenation by halogens or iodine chloride in 1,1,1,3,3,3-hexafluoropropan-2-ol

(Note: The full text of this document is currently only available in the PDF Version )

Lennart Eberson, Michael P. Hartshorn, Finn Radner and Ola Persson


Abstract

The reaction between aromatic compounds ArH and halogenating agents, viz. iodine chloride, chlorine, bromine, iodine, N-bromosuccinimide and N-chlorosuccinimide, in 1,1,1,3,3,3-hexafluoropropan-2-ol (HFP) has been investigated. EPR spectroscopy established that these reagents produced persistent radical cations ArH˙+ from ArH with Erev(ArH˙+/ArH) up to 1.6, 1.3, 1.4, 1.1, 1.5 and 1.2 V vs. Ag/AgCl, respectively. Cyclic voltammetry of the halogenating species shows that no effect of complexation with halide ion is observed in HFP, as expected from its capacity to drastically attenuate nucleophilic reactivity, and that the cathodic peak potentials Epc (referenced to the internal ferricinium/ferrocene redox couple) are significantly or remarkably higher in HFP than in acetonitrile. For N-bromosuccinimide, the difference amounts to almost 1 V.

The persistency of the radical cations in HFP is such that the kinetics of reactions between a halogenating agent, such as iodine chloride or bromine, and ArH, such as 1,4-dimethoxybenzene [Erev(ArH˙+/ArH) = 1.50 V vs. Ag/AgCl] or 1,4-dimethoxy-2,3-dimethylbenzene [Erev(ArH˙+/ArH) = 1.16 V], have been studied at room temperature over periods of hours. The initial concentration of the radical cation corresponds to yields in the range of 40–100%, depending on the reaction conditions. It is thus possible to establish that the radical cation decays via two pathways, one being the well known oxidative substitution reaction with halide ion. The second mechanism involves halogen atom transfer from the halogenating agent (Cl atom from ICl, Br atom from bromine). In the case of the radical cation of 1,4-dimethoxy-2,3-dimethylbenzene reacting with bromide ion or bromine, the latter reaction is >102 times faster.


References

  1. (a) L. Eberson, M. P. Hartshorn and F. Radner, in Advances in Carbocation Chemistry, vol. 2, ed. J. M. Coxon, JAI Press, London, 1995, p. 207 Search PubMed; (b) J. K. Kochi, Adv. Phys. Org. Chem., 1994, 29, 185 Search PubMed.
  2. A. Pross, Adv. Phys. Org. Chem., 1985, 21, 99 CAS; A. Pross, Acc. Chem. Res., 1985, 18, 212 CrossRef CAS; S. S. Shaik, Prog. Phys. Org. Chem., 1985, 15, 197 Search PubMed; S. S. Shaik, J. Am. Chem. Soc., 1981, 103, 3692 CrossRef CAS.
  3. Early proposals and refutation: J. Kenner, Nature, 1945, 156, 369 Search PubMed; J. Weiss, Trans. Faraday Soc., 1946, 42, 116 CAS; G. A. Benford, C. A. Bunton, E. S. Halberstadt, E. D. Hughes, C. K. Ingold and R. E. Reed, Nature, 1945, 156, 688 RSC Revival: C. L. Rerrin, J. Am. Chem. Soc., 1977, 99, 5516.
  4. L. Eberson, M. P. Hartshorn and F. Radner, Acta Chem. Scand., 1994, 48, 937 CrossRef CAS.
  5. L. Eberson, M. P. Hartshorn, O. Persson and F. Radner, J. Chem. Soc., Chem. Commun., 1996, 215 RSC.
  6. See, for example: A. J. Bard, A. Ledwith and H. J. Shine, Adv. Phys. Org. Chem., 1976, 12, 155 Search PubMed; F. M. Dean and U. Oyman, Tetrahedron Lett., 1988, 3721; F. M. Dean, S. N. France and U. Oyman, Tetrahedron, 1988, 44, 4857 CrossRef CAS; M. V. Jovanovic and E. R. Biehl, J. Org. Chem., 1984, 49, 1905 CrossRef CAS; H. Chiou, P. C. Reeves and E. R. Biehl, J. Heterocycl. Chem., 1976, 13, 77 CrossRef CAS; F. Effenberger, P. Bäuerle, W. Seufert and W.-D. Stohrer, Chem. Ber., 1990, 123, 193 CAS.
  7. (a) N. Boden, R. J. Bushby, A. N. Cammidge and G. Headdock, Tetrahedron Lett., 1995, 36, 8685 CrossRef CAS; (b) D. E. Turner, R. F. O'Malley, D. J. Sardella, L. S. Barinelli and P. Kaul, J. Org. Chem., 1994, 59, 7335 CrossRef CAS; (c) S. M. Hubig, W. Jung and J. K. Kochi, J. Org. Chem., 1994, 59, 6233 CrossRef CAS.
  8. (a) L. Eberson, M. P. Hartshorn and O. Persson, J. Chem. Soc., Chem. Commun., 1995, 1131 RSC; (b) L. Eberson, M. P. Hartshorn and O. Persson, J. Chem. Soc., Perkin Trans. 2, 1995, 1735 RSC; (c) L. Eberson, M. P. Hartshorn and O. Persson, Angew. Chem., Int. Ed. Engl., 1995, 34, 2268 CrossRef; (d) L. Eberson, M. P. Hartshorn and O. Persson, Res. Chem. Intermed., 1996, 22, 799 CAS; (e) L. Eberson, M. P. Hartshorn, O. Persson and F. Radner, J. Chem. Soc., Chem. Commun., 1996, 2105 RSC.
  9. L. Eberson, M. P. Hartshorn and O. Persson, J. Chem. Soc., Perkin Trans. 2, 1996, 141 RSC.
  10. T. M. Bockman and J. K. Kochi, J. Phys. Org. Chem., 1994, 7, 325 CrossRef CAS.
  11. A study of the bromination of 4,4′-dimethoxystilbene in 1,2-dichloromethane was recently published: G. Bellucci, C. Chiappe and G. Lo Moro, J. Org. Chem., 1997, 62, 3176 Search PubMed.
  12. J. K. Kochi, Tetrahedron Lett., 1975, 41 CrossRef CAS.
  13. L. Eberson, M. P. Hartshorn, O. Persson, F. Radner and C. J. Rhodes, J. Chem. Soc., Perkin Trans. 2, 1996, 1289 RSC.
  14. (a) I. M. Kolthoff and J. F. Coetzee, J. Am. Chem. Soc., 1957, 79, 1852 CrossRef CAS; (b) A. I. Popov and D. H. Geske, J. Am. Chem. Soc., 1958, 80, 1340 CrossRef CAS; (c) G. Dryhurst and P. J. Elving, Anal. Chem., 1967, 39, 606 CrossRef CAS; (d) G. Casalbore, G. M. Mastragostino and S. Valcher, J. Electroanal. Chem., 1977, 77, 373 CrossRef CAS; (e) L. G. Feoktistov, G. V. Andreev and A. P. Tomilov, Soviet Electrochem. (Engl. transl.), 1988, 24, 32 Search PubMed.
  15. J. E. Barry, M. Finkelstein, W. M. Moore, S. D. Ross, L. Eberson and L. Jönsson, J. Org. Chem., 1982, 47, 1292 CrossRef CAS.
  16. J. E. Barry, M. Finkelstein, W. M. Moore, S. D. Ross and L. Eberson, J. Org. Chem., 1985, 50, 528 CrossRef CAS.
  17. In view of the reaction course shown for 1-ICl in Fig. 5, the kinetics of the reactions of 3 and 4 should be accessible by the stopped-flow method.
  18. J. F. Evans and H. N. Blount, J. Am. Chem. Soc., 1978, 100, 4191 CrossRef CAS.
  19. J. W. Moore and R. G. Pearson, Kinetics and Mechanism, 3rd edn., Wiley, New York, 1981, p. 20 Search PubMed.
  20. The previously given value, 0.17 dm3 mol–1 s–1(ref. 5), was based on ε= 8500 dm3 mol–1 cm–1, valid for 3●+ in dichloromethane (ref. 7c).
  21. F. L. Cozens, R. A. McClelland and S. Steenken, J. Am. Chem. Soc., 1993, 115, 5050 CrossRef CAS and references therein.
  22. L. Eberson, M. P. Hartshorn, O. Persson and F. Radner, Acta Chem. Scand., 1997, 51, 492 CAS; L. Eberson, R. González-Luque, M. Merchán, F. Radner, B. O. Roos and S. Shaik, J. Chem. Soc., Perkin Trans. 2, 1997, 463 RSC.
  23. (a) U. Svanholm and V. D. Parker, Tetrahedron Lett., 1972, 471 CrossRef CAS; (b) W. Lau and J. K. Kochi, J. Org. Chem., 1986, 51, 1801 CrossRef CAS; (c) L. Byrd, L. L. Miller and D. Pletcher, Tetrahedron Lett., 1972, 2419 CrossRef CAS.
  24. L. Eberson, M. P. Hartshorn, O. Persson and J. O. Svensson, J. Chem. Soc., Perkin Trans. 2, 1995, 1253 RSC.
  25. L. Eberson, J. E. Barry, M. Finkelstein, W. M. Moore and S. D. Ross, Acta Chem. Scand., Ser. B, 1986, 40, 283 Search PubMed.
  26. S. D. Malone and J. F. Endicott, J. Phys. Chem., 1976, 44, 395.
  27. It may be argued that chlorination may also result from the action of chlorine, present in equilibrium with ICl and iodine (see note 22 in ref. 7c). However, in HFP chlorination of 4 and compounds of similar reactivity would take place via the ET mechanism.
  28. C. W. McCleland, Synthetic Reagents, ed. J. S. Pizey, Harwood, Chichester, 1983, vol. 5, p. 85 Search PubMed.
  29. H. A. Muathen, J. Chem. Res. (S), 1994, 405 Search PubMed.
  30. D. Duling, Public EPR Software Tools, National Institute of Environmental Health Sciences, 1996 Search PubMed.
  31. It is advisable to use the best HFP qualities commercially available, since the cheaper qualities may have hydrogen fluoride as an impurity.
  32. L. Eberson, M. P. Hartshorn and O. Persson, Acta Chem. Scand., 1995, 49, 640 CrossRef CAS.
  33. This spectrum is also similar to that obtained in HFP or TFA from the oxidation of 1,2-dimethylnapthalene by TlIII frifluoroacetate: L. Eberson, M. P. Hartshorn and O. Persson, J. Chem. Soc., Perkin Trans. 2, 1995, 409 Search PubMed See also: A. Terahara, H. Ohya-Nishiguchi, N. Hirota and A. Oku, J. Phys. Chem., 1986, 90, 1564 RSC.
  34. L. Eberson, J. L. Calvert, M. P. Hartshorn and W. T. Robinson, Acta Chem. Scand., 1993, 47, 1025 CAS.
  35. H. J. Shine and P. D. Sullivan, J. Phys. Chem., 1968, 72, 1390 CrossRef CAS.
  36. P. D. Sullivan, J. Phys. Chem., 1972, 76, 3943 CrossRef CAS.
  37. K. Scheffler and H. B. Stegmann, Elektronenspinresonanz, Springer-Verlag, Heidelberg, 1970, p. 462 Search PubMed.
  38. M. J. Drews, P. S. Wong and P. R. Jones, J. Am. Chem. Soc., 1972, 94, 9122 CrossRef CAS.
  39. J. T. Cooper and W. F. Forbes, Can. J. Chem., 1968, 46, 1158.
  40. L. Eberson, F. Radner and M. Lindgren, Acta Chem. Scand., 1993, 47, 835 CAS.
  41. P. D. Sullivan and N. A. Brette, J. Phys. Chem., 1975, 79, 474 CrossRef CAS; P. D. Sullivan, J. Am. Chem. Soc., 1975, 97, 3992 CrossRef CAS.
  42. L. Eberson and F. Radner, J. Chem. Soc., Chem. Commun., 1991, 1233 RSC; Acta Chem. Scand., 1992, 46, 630 Search PubMed.
  43. P. D. Sullivan and J. R. Bolton, J. Magn. Reson., 1969, 1, 356 CAS.
  44. L. Eberson, J. Phys. Chem., 1994, 98, 752 CrossRef CAS.
  45. B. J. Kennedy and G. A. Heath, Inorg. Chim. Acta, 1991, 187, 149 CrossRef CAS.
  46. L. Eberson and J. J. MacCullough, J. Chem. Soc., Perkin Trans. 2, preceding paper Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.