Study of the aqueous photochemistry of 4-fluorophenol, 4-bromophenol and 4-iodophenol by steady state and nanosecond laser flash photolysis

(Note: The full text of this document is currently only available in the PDF Version )

Anne-Pascale Durand, Robert G. Brown, David Worrall and Francis Wilkinson


Abstract

The mechanisms of the aqueous photoreactions of 4-fluorophenol, 4-bromophenol and 4-iodophenol have been studied by steady state photolysis and by nanosecond laser flash photolysis. The same photoproducts are obtained as were found in the photolysis of aqueous 4-chlorophenol although the photoreaction quantum yields vary considerably across the series of compounds. As for 4-chlorophenol the carbene 4-oxocyclohexa-2,5-dienylidene is formed from the halogenophenol by loss of HX and this species reacts efficiently with oxygen to form 1,4-benzoquinone O-oxide which subsequently yields 1,4-benzoquinone. Consideration of the reaction quantum yields together with the photophysical properties of the four halogenophenols suggests that the carbene is derived from the first excited singlet state rather than a triplet excited state.


References

  1. A. Mills, R. H. Davies and D. Worsley, Chem. Soc., Rev., 1993, 417 RSC.
  2. K. Rajeshwar, Chem. Ind., 1996, 454 CAS.
  3. U. Stafford, K. A. Gray and P. V. Kamat, J. Phys. Chem., 1994, 98, 6343 CrossRef CAS.
  4. A. Mills and R. Davies, J. Photochem. Photobiol. A, 1995, 85, 173 CrossRef CAS.
  5. P. Boule, C. Guyon and J. Lemaire, Chemosphere, 1982, 11, 1179 CAS.
  6. E. Lipczynska-Kochany and J. R. Bolton, J. Chem. Soc., Chem. Commun., 1990, 1596 RSC; J. Photochem. Photobiol. A, 1991, 58, 315 Search PubMed.
  7. K. Oudjehani and P. Boule, J. Photochem. Photobiol. A, 1992, 68, 363 CrossRef CAS.
  8. A.-P. Y. Durand, D. Brattan and R. G. Brown, Chemosphere, 1992, 25, 783 CAS.
  9. A.-P. Y. Durand and R. G. Brown, Chemosphere, 1995, 31, 3595 CrossRef CAS.
  10. G. Grabner, C. Richard and G. Köhler, J. Am. Chem. Soc., 1994, 116, 11 470 CrossRef CAS.
  11. A.-P. Y. Durand, R. G. Brown, D. Worrall and F. Wilkinson, J. Photochem. Photobiol. A, 1996, 96, 35 CrossRef CAS.
  12. E. Lipczynska-Kochany, Chemosphere, 1992, 24, 911 CAS.
  13. E. Lipczynska-Kochany and J. Kochany, J. Photochem. Photobiol. A, 1993, 73, 23 CrossRef CAS.
  14. E. Lipczynska-Kochany, J. Kochany and J. R. Bolton, J. Photochem. Photobiol. A, 1992, 62, 229 CrossRef.
  15. A.-P. Y. Durand, Ph.D. Thesis, University of Central Lancashire, 1995.
  16. A. M. Braun, M. T. Maurette and E. Oliveros, Photochemical Technology, Wiley, Chichester, 1991 Search PubMed.
  17. D. V. O'Connor and D. Phillips, Time correlated single photon counting, Academic Press, New York, 1984 Search PubMed.
  18. R. Sparrow, R. G. Brown, E. H. Evans and D. Shaw, J. Chem. Soc. Faraday Trans. 2, 1986, 82, 2249 RSC.
  19. E. Wasserman and R. W. Murray, J. Am. Chem. Soc., 1964, 86, 4203 CrossRef CAS; W. Sander, W. Müller and R. Sustmann, Angew. Chem., Int. Ed. Engl., 1988, 27, 572 CrossRef.
  20. Thermochemistry of Organic and Organometallic Compounds, ed. J. D. Cox and G. Pilcher, Academic Press, London and New York, 1970 Search PubMed.
  21. J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, London, 1969 Search PubMed.
  22. G. Zhang and P. Wan, J. Chem. Soc., Chem. Commun., 1994, 19 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.