Crystal polymorphism in pendimethalin herbicide is driven by electronic delocalization and changes in intramolecular hydrogen bonding. A crystallographic, spectroscopic and computational study

(Note: The full text of this document is currently only available in the PDF Version )

Gerald W. Stockton, Russell Godfrey, Peter Hitchcock, Richard Mendelsohn, Patrick C. Mowery, Srinivasan Rajan and Anthony F. Walker


Abstract

Pendimethalin, N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine, is a potent herbicide that exists in two differently coloured polymorphic crystal habits. Triclinic pendimethalin I (P[hair space][1 with combining macron]) is the orange-coloured thermodynamically stable form, whereas monoclinic pendimethalin II (P[hair space]21/c) is a bright-yellow metastable form. The latter is normally produced first upon cooling the molten chemical, whereas the orange form is formed by a polymorphic phase transition which occurs slowly upon long term storage of the yellow form at temperatures below its melting point. Such phase transitions are rapidly revealed by calorimetry. The crystal structures of the polymorphs have been determined using single crystal X-ray diffraction. Solid state NMR spectroscopy, vibrational spectroscopy and UV–VIS spectroscopy were applied to further study the nature of the polymorphism in terms of intra- and inter-molecular properties. Solid state CP-MAS 13C NMR spectroscopy was shown to be the method of choice for quantitative analysis of polymorphic mixtures. The differences in spectral properties and crystal habits were investigated by computational methods which included molecular exciton, molecular orbital and molecular mechanics calculations. The dramatic colour change from yellow to orange-red during the polymorphic transition is discussed in terms of competing inter- and intra-molecular electronic effects. The driving force for the yellow (II) to orange (I) polymorphic transition is attributed to the change in the electronic delocalization achieved from shortening, strengthening, and partially straightening the ‘bent’ hydrogen bond between the secondary amino hydrogen and an oxygen of the 6′-nitro group. This results in increased overlap between the amino nitrogen’s lone pair and the π-electron orbitals of the aromatic ring. The calculated lattice stabilization energy due to this process is 4 to 5 kcal mol–1, and the relative lattice energies are consistent with the observed stabilities of the polymorphs. The slow kinetics of the polymorphic transition are largely governed by the steric interaction of the 1-ethylpropyl side chain and the two nitro groups. During crystallization, the more compact side chain conformation required to form the energetically more stable orange (I) polymorph appears to be more difficult to achieve than that required for the yellow (II) polymorph.


References

  1. G. R. Desiraju, Science, 1997, 278, 404 CrossRef CAS.
  2. A. S. Meyerson, Handbook of Industrial Crystallization, Butterworth–Heinemann Series in Chemical Engineering, ed. H. Brenner, Butterworth–Heinemann, Boston, 1993 Search PubMed.
  3. T. L. Threlfall, Analyst, 1995, 120, 2435 RSC.
  4. G. Clydesdale, K. J. Roberts and R. Docherty, J. Cryst. Growth, 1994, 135, 331 CrossRef CAS.
  5. G. Clydesdale, K. J. Roberts, K. Lewtas and R. Docherty, J. Cryst. Growth, 1994, 141, 443 CrossRef CAS.
  6. R. J. Davey, J. Cryst. Growth, 1975, 29, 212 CrossRef CAS.
  7. R. J. Davey, J. Cryst. Growth, 1976, 34, 109 CrossRef CAS.
  8. Z. Berkovitch-Yellin, J. Am. Chem. Soc., 1985, 107, 3111 CrossRef CAS.
  9. Y. Weisinger-Lewiz, F. Frolow, R. K. McMullan, T. F. Koetzle, M. Lahav and L. Leiserowitz, J. Am. Chem. Soc., 1989, 111, 1035 CrossRef CAS.
  10. H. W. Karfunkel, F. J. J. Leusen and R. J. Gdanitz, J. Comput.-Aided Mater. Des., 1993, 1, 177 Search PubMed.
  11. K. T. Thomson, R. M. Wentzcovitch and M. S. T. Bukowinski, Science, 1996, 274, 1880 CrossRef CAS.
  12. G. Clydesdale, K. J. Roberts and R. Docherty, J. Cryst. Growth, 1996, 166, 78 CrossRef CAS.
  13. R. Docherty, G. Clydesdale, K. J. Roberts and P. Bennema, J. Phys. D: Appl. Phys., 1991, 24, 88 CrossRef CAS.
  14. M. H. J. Hottehuis, J. G. E. Gardeniers, L. Jetten and P. Bennema, J. Cryst. Growth, 1988, 92, 171 CrossRef.
  15. P. Hartman and P. Bennema, J. Cryst. Growth, 1980, 49, 145 CrossRef CAS.
  16. P. Hartman, J. Cryst. Growth, 1980, 49, 157 CrossRef CAS.
  17. J. D. H. Donnay and D. Harker, Am. Mineral., 1937, 22, 446 CAS.
  18. W. T. M. Mooij, B. O. van Eijck, S. L. Price, P. Verwer and J. Kroon, J. Comput. Chem., 1998, 19, 459 CrossRef CAS.
  19. A. Gavezotti, Acc. Chem. Res., 1994, 27, 309 CrossRef CAS.
  20. A. Gavezotti, Curr. Opin. Solid State Mater. Sci., 1996, 1, 501 CrossRef CAS.
  21. G. Clydesdale and K. J. Roberts, Langmuir, 1996, 12, 5722 CrossRef.
  22. P. L. Sprankle, Proc. Br. Weed Control Conf., 12th, 1974, 2, 825 Search PubMed.
  23. The Pesticide Manual incorporating the Agrochemicals Handbook, British Crop Protection Council, Surrey, UK, and The Royal Society of Chemistry, London, UK, 10th edn., 1994 Search PubMed.
  24. F. L. Ashton and A. S. Crofts, Mode of Action of Herbicides, Wiley, New York, 1981 Search PubMed.
  25. Solid/Liquid Dispersions, ed. Th. F. Tadros, Academic Press, New York, 1987 Search PubMed.
  26. The work described in this paper aided the development of a physically stable suspension concentrate formulation for pendimethalin, as described by L. J. Morgan and M. Bell, US Patent No. 4 871 392 October 3, 1989, and L. J. Morgan, US Patent No. 4 875 929, October 24, 1989.
  27. G. Germain, P. Main and M. M. Woolfson, Acta Crystallogr., Sect. B, 1970, 26, 91 CrossRef CAS.
  28. E. R. Andrew, A. Bradbury and R. G. Eades, Nature, 1958, 182, 1659 CAS.
  29. B. Schneider, D. Doskocilova, J. Babka and Z. Ruzicka, J. Magn. Reson., 1980, 37, 41 CAS.
  30. W. T. Dixon, J. Schaefer, E. O. Stejskal and R. A. McKay, J. Magn. Reson., 1982, 49, 341 CAS.
  31. G. Scheler, U. Haubenreisser and H. Rosenberger, J. Magn. Reson., 1981, 44, 134 CAS.
  32. W. Kiefer and H. J. Bernstein, Appl. Spectrosc., 1971, 25, 609 CAS.
  33. SYBYL Molecular Modeling Software, version 5.2 is a product of Tripos Associates, Inc, a Subsidiary of Evans and Sutherland, 1699 S.Hanley Rd., Suite 303, St. Louis, Missouri 63144 Search PubMed.
  34. CERIUS Crystal Modeling Software, Molecular Simulations Inc, Burlington, Massachusetts Search PubMed.
  35. S. L. Mayo, W. A. Godard III and B. D. Olafson, J. Phys. Chem., 1990, 94, 8897 CrossRef CAS.
  36. J. E. Ridley and M. C. Zerner, Theor. Chim. Acta., 1973, 32, 111 CrossRef CAS.
  37. M. C. Zerner, G. H. Loew, R. F. Kirchner and U. T. Mueller-Westerhoff, J. Am. Chem. Soc., 1980, 102, 589 CrossRef CAS.
  38. W. D. Edwards, B. Weiner and M. C. Zerner, J. Am. Chem. Soc., 1986, 108, 2196 CrossRef CAS.
  39. J. Bernstein and A. T. Hagler, J. Am. Chem. Soc., 1978, 100, 673 CrossRef CAS.
  40. A. T. Hagler and J. Bernstein, J. Am. Chem. Soc., 1978, 100, 6349 CrossRef CAS.
  41. J. Bernstein, Acta Crystallogr., Sect. B, 1979, 35, 360 CrossRef.
  42. A. Warshel and S. Lifson, J. Chem. Phys., 1970, 53, 582 CAS.
  43. R. M. Wentzcovitch, Phys. Rev. B: Condens. Matter, 1991, 44, 2358 Search PubMed.
  44. R. M. Wentzcovitch, J. L. Martins and G. D. Price, Phys. Rev. Lett., 1993, 70, 3947 CrossRef CAS.
  45. A. Gavezott, NATO ASI Ser., Ser. C, 1994, 426, 51 Search PubMed.
  46. R. K. Hester, J. L. Ackerman, J. L. Neff and J. S. Waugh, Phys. Rev. Lett., 1976, 36, 1081 CrossRef CAS.
  47. A. Pines, M. G. Gibby and J. S. Waugh, J. Chem. Phys., 1973, 59, 569 CrossRef CAS.
  48. J. Schaefer and E. O. Stejskal, J. Am. Chem. Soc., 1976, 98, 1031 CrossRef CAS.
  49. C. A. Fife, Solid State NMR for Chemists, CFC Press, Guelf, Ontario, Canada, 1983 Search PubMed.
  50. J. A. Ripmeester, Chem. Phys. Lett., 1980, 536 CrossRef CAS.
  51. C. Doherty and P. York, Int. J. Pharm., 1988, 47, 141 CrossRef CAS.
  52. J. G. Hexam, M. H. Frey and S. J. Opella, J. Chem. Phys., 1982, 77, 3847 CrossRef CAS.
  53. The Aldrich Library of NMR Spectra, Pouchert and Campbell, 1974 Search PubMed.
  54. J. C. Bellows and F. P. Chen, Drug Dev. Ind. Pharm., 1977, 3, 451 CAS.
  55. K. Kumar and P. Carey, J. Chem. Phys., 1975, 63, 3697 CrossRef CAS.
  56. S. F. Mason, Q. Rev. Chem. Soc., 1961, 15, 287 RSC.
  57. R. W. H. Berry, Chem. Br., 1987, 23, 210 Search PubMed.
  58. A. S. Davydov, Theory of Molecular Excitons, McGraw-Hill, New York, 1962 Search PubMed.
  59. Light and Organic Crystals, Th. Förster, in Modern Quantum Chemistry, ed. O. Sinanoglu, Academic Press, New York, 1965, pp. 93–137 Search PubMed.
  60. S. F. Mason, Q. Rev. Chem. Soc., 1963, 17, 20 RSC.
  61. W. Kauzman, Quantum Chemistry, Academic Press, New York, 1957 Search PubMed.
  62. J. D. Bernal and R. H. Fowler, J. Chem. Phys., 1933, 1, 515 CrossRef CAS.
  63. J. A. Pople, Proc. R. Soc. London, Ser. A, 1951, 205, 163.
  64. W. G. Schneider, J. Chem. Phys., 1955, 23, 26 CAS.
  65. J. C. M. van Duijneveldt-van de Rijdt and F. B. van Duijneveldt, J. Am. Chem. Soc., 1971, 93, 5644 CrossRef CAS.
  66. S. P. Srivastara, J. Handoo, K. M. Agrawal and G. C. Joshi, J. Phys. Chem. Solids, 1993, 54, 639 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.