Three-center intramolecular hydrogen bonding in oxamide derivatives. NMR and X-ray diffraction study

(Note: The full text of this document is currently only available in the PDF Version )

F. J. Martínez-Martínez, I. I. Padilla-Martínez, M. A. Brito, E. D. Geniz, R. C. Rojas, J. B. R. Saavedra, H. Höpfl, M. Tlahuextl and R. Contreras


Abstract

This contribution describes the synthesis and structural investigation of the symmetric and non-symmetric oxamides N,N[hair space]′-bis(2-hydroxyphenyl)oxamide 1, N,N[hair space]′-bis(5-tert-butyl-2-hydroxyphenyl)oxamide 2, N,N[hair space]′-bis(3,5-dimethyl-2-hydroxyphenyl)oxamide 3, N,N[hair space]′-bis(2-hydroxybenzyl)oxamide 4, N,N[hair space]′-diphenethyloxamide 5, N-(2-hydroxyphenyl)-N[hair space]′-(2-methoxyphenyl)oxamide 6, N-(2-hydroxyphenyl)-N[hair space]′-phenethyloxamide 7, (1S,2R)-(–)-N-(2-hydroxyphenylcarbamoylcarbonyl)norephedrine 8, (1R,2S[hair space])-(–)-N-(2-hydroxyphenylcarbamoylcarbonyl) 9, ethyl N-(2-hydroxyphenyl)oxalamate 10 and ethyl N-(2-methoxyphenyl)oxalamate 11. The structures were established by 1H, 13C, 15N and variable temperature NMR spectroscopy. Compounds 1–4 and 6–11 are stabilized by intramolecular three-center hydrogen bonding between the amide proton and two oxygen atoms. The 1H NMR ΔδT value of the amide proton correlates with the 15N NMR chemical shift. The X-ray diffraction molecular structures of 1 and 11 showed a planar conformation with trans configuration in the solid state, corresponding to the preferred conformation found in solution.


References

  1. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, N.Y, 1960 Search PubMed.
  2. S. M. Reutzel and M. C. Etter, J. Phys. Org. Chem., 1992, 5, 44 CrossRef CAS.
  3. Y. A. Ovchinnikov and V. T. Ivanov, Tetrahedron, 1975, 31, 2177 CrossRef CAS.
  4. E. S. Stevens, N. Sugawara, G. M. Bonora and C. Tionolo, J. Am. Chem. Soc., 1980, 102, 7048 CrossRef CAS.
  5. G. P. Dado and S. H. Gellman, J. Am. Chem. Soc., 1994, 116, 1054 CrossRef CAS.
  6. T. Ishida, Y. In, A. Fujikawa, H. Urata, M. Inouse, K. Akai, K. Takesako and I. Kato, J. Chem. Soc., Chem. Commun., 1992, 1231 RSC.
  7. C. Huang, L. A. Cabell and E. A. Anslyn, J. Am. Chem. Soc., 1994, 116, 2778 CrossRef CAS.
  8. S. Subramanian and M. J. Zaworotko, Coord. Chem. Rev., 1994, 137, 357 CrossRef CAS.
  9. C. B. Aakeröy and K. R. Seddon, Chem. Soc. Rev., 1993, 397 RSC.
  10. F. J. Matínez-Martínez, A. Ariza-Castolo, H. Tlahuext, M. Tlahuextl and R. Contreras, J. Chem. Soc., Perkin Trans 2, 1993, 1481 RSC.
  11. G. P. Dado and S. H. Gellman, J. Am. Chem. Soc., 1994, 116, 1054 CrossRef CAS.
  12. S. H. Gellman, B. R. Adam and G. P. Dado, J. Am. Chem. Soc., 1990, 112, 460 CrossRef CAS.
  13. S. Provera, C. Marchioro, S. Davailli and N. Case, Magn. Reson. Chem., 1997, 35, 342 CrossRef CAS.
  14. H. Kessler, Angew. Chem., Int. Ed. Engl., 1982, 21, 2177.
  15. G. A. Webb, Ann. Rep. NMR Spectrosc., 1981, 113, 112 Search PubMed.
  16. G. Verardo, A. G. Giumanini, F. Gorassini, M. Tolazzi and P. Strazzolini, Tetrahedron, 1993, 49, 10 609 CrossRef CAS.
  17. J. E. Huheey, Inorganic Chemistry, Harper International SI edn., 1983, p. 258 Search PubMed.
  18. Y. Hamuro, S. J. Geib and A. D. Hamilton, Angew. Chem., Int. Ed. Engl., 1994, 33, 446 CrossRef.
  19. D. J. Watkin, J. R. Carruthers and P. W. Betteridge, CRYSTALS, An Advanced Chrystallographic Program System, Chemical Chrystallography Laboratory, University of Oxford, Oxford, 1988 Search PubMed.
  20. G. W. Sheldrick, SHELXTL 93, University of Göttingen, 1993.
Click here to see how this site uses Cookies. View our privacy policy here.