Generation of tricyanomethyl spin adducts of α-phenyl-N-tert-butylnitrone (PBN) via non-conventional mechanisms

(Note: The full text of this document is currently only available in the PDF Version )

Lennart Eberson and John J. McCullough


Abstract

Spin adducts, formally derived from tricyanomethyl radical attachment to α-phenyl-N-tert-butylnitrone (PBN; IUPAC name: N-benzylidene-tert-butylamine N-oxide), have been generated by various methods, such as oxidation of a mixture of tricyanomethanide ion and PBN by tris(4-bromophenyl)aminium ion or bromine, photo-oxidation of a mixture of tricyanomethane and PBN with 2,4,6-tris(4-methoxyphenyl)pyrylium ion as a sensitizer, or photolysis of chlorotricyanomethane and PBN at –30 °C, the low temperature being necessary to avoid fast concurrent cycloaddition with PBN. Both the C- and N-connected spin adducts, (NC)3C-PBN˙ and (NC)2C[double bond, length half m-dash]C[double bond, length half m-dash]N–PBN˙, have been characterized, as has an aminoxyl formed by elimination of hydrogen cyanide from the former species, (NC)2C[double bond, length half m-dash]C(Ph)N(O˙)But. For comparison, similar experiments have been performed using carbamoyldicyanomethanide ion and carbamoylchlorodicyanomethane and the spin adduct H2NCO(CN)2C-PBN˙ has been characterized.

The redox properties of tricyanomethanide ion, carbamoyldicyanomethanide ion, chlorotricyanomethane and carbamoylchlorodicyanomethane have been studied by cyclic voltammetry. For chlorotricyanomethane, the redox reactivity has also been evaluated by its propensity to generate radical cations from aromatic substrates ArH in 1,1,1,3,3,3-hexafluoropropan-2-ol. Tricyanomethanide ion has E[hair space][(CN)3C˙/(CN)3C]rev at 1.35 V (vs. Ag/AgCl) in acetonitrile while chlorotricyanomethane with Epc at about 0.6 V and a capability to oxidize compounds with redox potentials up to ca. 1.5 V to radical cations, emerges as belonging to the strongest neutral organic electron acceptors.


References

  1. H. Sang, E. G. Janzen and J. L. Poyer, J. Chem. Soc., Perkin Trans. 2, 1996, 1183 RSC cf. also J. J. McCullough and O. Persson, J. Chem. Soc., Perkin Trans. 2, 1997, 133 Search PubMed.
  2. L. Eberson, M. P. Hartshorn and O. Persson, J. Chem. Soc., Perkin Trans. 2, 1997, 195 RSC.
  3. Later it was found that also thermal oxidation (by XeF2) gave the same radical species: L. Eberson and O. Persson, J. Chem. Soc., Perkin Trans. 2, 1997, 893 Search PubMed.
  4. Radical cations of spin traps have been generated by the matrix technique, characterized by various methods, and shown to react with nucleophiles: V. Zubarev and O. Brede, J. Chem. Soc., Perkin Trans. 2, 1994, 1821 Search PubMed; 1995, 2183 RSC; H. Chandra and M. C. R. Symons, J. Chem. Soc., Chem. Commun., 1986, 1301 RSC; S. Bhattacharjee, M. N. Khan, H. Chandra and M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2, 1996, 2631 Search PubMed.
  5. (a) L. Eberson, J. Chem. Soc., Perkin Trans. 2, 1992, 1807 RSC; (b) L. Eberson and M. Nilsson, Acta Chem. Scand., 1993, 47, 1129 CAS; (c) L. Eberson, J. Chem. Soc., Perkin Trans. 2, 1994, 171 RSC; (d) L. Eberson, J. Lind and G. Merenyi, J. Chem. Soc., Perkin Trans. 2, 1994, 1181 RSC; (e) L. Eberson, M. P. Hartshorn and O. Persson, J. Chem. Soc., Perkin Trans. 2, 1996, 141 RSC.
  6. A. R. Forrester and S. P. Hepburn, J. Chem. Soc. (C), 1971, 701 RSC.
  7. (a) T. Brinck, J. S. Murray and P. Politzer, J. Org. Chem., 1991, 56, 5012 CrossRef CAS; (b) J. Cioslowski, S. T. Mixon and E. D. Fleischmann, J. Am. Chem. Soc., 1991, 113, 4751 CrossRef CAS.
  8. R. A. Kaba and K. U. Ingold, J. Am. Chem. Soc., 1976, 98, 523 CrossRef CAS.
  9. Trinitromethyl radical has been generated by γ irradiation, but not photolysis, of tetranitromethane in ethanol at 77 K and characterized by its EPR spectrum (a 1∶3∶6∶7∶6∶3∶1 septet with an hfsc of 0.35 mT): C. Chachaty and C. Rosilio, C. R. Acad. Sci. Paris, Ser. C, 1966, 262, 789 Search PubMed.
  10. G. Leroy, Book of Abstracts, Sixth International Symposium on Organic Free Radicals, 23–28 August 1992, Noordwijkerhout, The Netherlands, p. 1 Search PubMed.
  11. L. Eberson, J. J. McCullough, C. Hartshorn and M. P. Hartshorn, J. Chem. Soc., Perkin Trans. 2, 1998, preceding paper Search PubMed.
  12. For a review of the role of electron transfer reactions in the formation of spin adducts, see: L. Eberson, Adv. Phys. Org. Chem., in the press Search PubMed.
  13. Dissociative ET is sometimes taken to mean solely the process in which ET and carbon–halogen bond cleavage are synchronous. See: L. Eberson, Acta Chem. Scand., Ser. B, 1982, 36, 533 Search PubMed; J.-M. Saveant, Adv. Phys. Org. Chem., 1990, 26, 1 Search PubMed; A. H. Zewail, J. Phys. Chem., 1996, 100, 12 701 CAS.
  14. This is the same process as the method for making chlorotricyanomethane: S. Lotz and G. Gattow, Z. Anorg. Allg. Chem., 1992, 609, 117 Search PubMed.
  15. L. Eberson, M. P. Hartshorn, F. Radner and O. Persson, Chem. Commun., 1996, 215 RSC.
  16. L. Eberson and O. Persson, J. Chem. Soc., Perkin Trans. 2, in the press Search PubMed.
  17. L. Eberson, O. Persson and F. Radner, Res. Chem. Intermed., 1996, 22, 799 CAS.
  18. C. P. Butts, L. Eberson, M. P. Hartshorn, O. Persson and W. T. Robinson, Acta Chem. Scand., 1995, 49, 253 CAS.
  19. L. Eberson, J. J. McCullough, C. Hartshorn and M. P. Hartshorn, Synth. Commun., 1997, 27, 3779 CAS.
  20. S. W. Mao and L. Kevan, J. Phys. Chem., 1976, 80, 2330 CrossRef CAS.
  21. E. G. Janzen, E. R. Davis and C. M. DuBose, Magn. Res. Chem., 1995, 33, S166 CAS.
  22. For a review, see: L. Eberson, M. P. Hartshorn, O. Persson and F. Radner, Chem. Commun., 1996, 2105 Search PubMed.
  23. L. Eberson and B. Larsson, Acta Chem. Scand., Ser. B, 1986, 40, 210 Search PubMed; 1987, 41, 367; D. Pletcher and G. D. Zappi, J. Electroanal. Chem., 1989, 265, 203 Search PubMed; P. S. Engel, A. K. Hoque, J. N. Scholz, H. J. Shine and K. H. Whitmire, J. Am. Chem. Soc., 1988, 110, 7880 CrossRef CAS.
  24. S. Trofimenko, J. Org. Chem., 1963, 28, 217 CAS.
  25. Analogously to the behaviour of N-chloroimides (refs. 5d,e) and N-chlorobenzotriazole (P. Carloni, L. Eberson, L. Greci, P. Sgarabotti and P. Stipa, J. Chem. Soc., Perkin Trans. 2, 1996, 1297). In general, the cleavage of an R–X●– species proceeds to produce the anion of highest E°(X/X) in the case of (NC)3C–Cl●– the relevant potentials are E°(Cl/Cl) at ca. 1.6 V and E°[(NC)3C/(NC)3C] at ca. 1.35 V Search PubMed.
  26. S. Trofimenko, E. S. Little and H. F. Mower, J. Org. Chem., 1962, 27, 433 CAS.
  27. R. C. Beaumont, K. B. Aspin, T. J. Demas, J. H. Hoggatt and E. G. Potter, Inorg. Chim. Acta, 1984, 84, 141 CrossRef CAS.
  28. H. Yasuba, T. Imai, K. Okamoto, S. Kusabayashi and H. Mikawa, Bull. Chem. Soc. Jpn., 1970, 43, 3101 CAS.
  29. J. K. Williams, E. L. Martin and W. A. Sheppard, J. Org. Chem., 1966, 31, 919 CAS; R. H. Boyd, J. Phys. Chem., 1963, 67, 737 CAS.
  30. S. Lotz and G. Gattow, Z. Anorg. Allg. Chem., 1992, 611, 134 CAS; K. Rakus, S. P. Verevkin, H.-D. Beckhaus and C. Rüchardt, Chem. Ber., 1994, 127, 2225 CAS.
  31. G. R. Buettner, Free Radical Biol. Med., 1987, 3, 259 CrossRef CAS.
  32. This is analogous to the method to prepare bromotricyanomethane. See ref. 14.
  33. A. Alberti, P. Carloni, L. Eberson, L. Greci and P. Stipa, J. Chem. Soc., Perkin Trans. 2, 1997, 887 RSC.
  34. A similar aminoxyl radical was obtained by the oxidation of PBN-dinitroamide ion: L. Eberson, Acta Chem. Scand., in the press Search PubMed.
  35. M. J. Davies, B. C. Gilbert, J. K. Stell and A. C. Whitwood, J. Chem. Soc., Perkin Trans. 2, 1992, 333 RSC.
  36. D. A. Dixon, J. C. Calabrese and J. S. Miller, J. Am. Chem. Soc., 1986, 108, 2582 CrossRef CAS.
  37. D. Duling, Public EPR Software Tools, National Institute of Environmental Health Sciences, 1996 Search PubMed.
  38. L. Eberson, Electron Transfer Reactions in Organic Chemistry, Springer-Verlag, Heidelberg, 1987 Search PubMed.
  39. M. Martiny, E. Steckhan and T. Esch, Chem. Ber., 1993, 126, 1671 CAS.
  40. Data were obtained from: S. L. MurovI. CarmichaelG. L. HugHandbook of Photochemistry, Dekker, New York, 2nd edn., 1993 Search PubMed.
  41. R. H. Magnuson, Inorg. Chem., 1984, 23, 387 CrossRef CAS; W. Preetz and M. Bruns, Z. Naturforsch., 1983, 38b, 680 Search PubMed.
  42. C. J. Schlesener and J. K. Kochi, J. Org. Chem., 1984, 49, 3142 CrossRef CAS.
  43. A. J. Bard, J. C. Gilbert and R. D. Goodin, J. Am. Chem. Soc., 1974, 96, 620 CrossRef CAS; W. Sümmerman and U. Deffner, Tetrahedron, 1975, 31, 593 CrossRef; J. M. Bobbitt and C. L. Flores, Heterocycles, 1988, 27, 509 CrossRef CAS.
  44. S. Ozaki and M. Masui, Chem. Pharm. Bull., 1978, 26, 1364 CAS; H. Sayo, S. Ozaki and M. Masui, Chem. Pharm. Bull., 1973, 21, 1988 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.