Quantitative solid–solid synthesis of azomethines

(Note: The full text of this document is currently only available in the PDF Version )

Jens Schmeyers, Fumio Toda, Juergen Boy and Gerd Kaupp


Abstract

Twenty preparatively useful azomethines have been quantitatively (100% yield at 100% conversion) obtained as hydrates by grinding together solid anilines with solid benzaldehydes without passing through liquid phases. Unlike (acid catalyzed) azomethine syntheses in solution, the solid–solid condensations proceed ‘waste-free’. The solid-state mechanisms have been elucidated by atomic force microscopy (AFM) and in part by scanning near-field optical microscopy (SNOM) in three cases. The results indicate long distance migration of the aldehydes into the lattice of the aniline derivatives. Stumpy protrusions are formed at the direct points of contact but also close distance sublimation (100 nm range) is successful in the case of p-chlorobenzaldehyde and p-nitroaniline. Long-range flow of 4-hydroxybenzaldehyde molecules on its (010)-face into contacting crystals of p-toluidine or p-anisidine occurs along two different cleavage planes. Steep hills and valleys are left behind. The molecular migrations through the sites of contact are interpreted in terms of crystal packing. The ease of these solid–solid condensation reactions relies on the crystal packing.


References

  1. F. Toda and M. Ochi, Enantiomer, 1996, 1, 85 Search PubMed.
  2. F. Toda and M. Imai, J. Chem. Soc., Perkin Trans. 1, 1994, 2673 RSC; M. J. Brown, Heterocycles, 1989, 29, 2225 CAS; T. Wagner-Jauregg, Synthesis, 1976, 349 CrossRef CAS; A. Robert, Tetrahedron, 1973, 29, 463 CrossRef CAS.
  3. L. Strekowski, M. I. Cegla, D. B. Harden, S. L. Mokrocz and M. S. Mokrocz, Tetrahedron Lett., 1988, 29, 4265 CrossRef CAS; N. S. Isaacs, Chem. Soc. Rev., 1976, 5, 181 RSC; A. W. Herriott and D. Picker, J. Am. Chem. Soc., 1975, 97, 2345 CrossRef CAS; E. Ziegler and H. D. Hanus, Monatsh. Chem., 1968, 99, 2024 CAS.
  4. G. Kaupp, U. Pogodda and J. Schmeyers, Chem. Ber., 1994, 127, 2249 CrossRef CAS.
  5. Recent reviews: K. Tanaka, F. Toda, Chem. Rev., in the press Search PubMed; F. Toda, in Comprehensive Supramolecular Chemistry, ed. D. D. MacNicol, F. Toda and R. Bishop, Elsevier, Oxford, 1996, vol. 6, p. 465–516 Search PubMed.
  6. J. M. Lohar and D. S. Shah, Mol. Cryst. Liq. Cryst., 1974, 28, 293 CAS; I. Bar and J. Bernstein, Acta Crystallogr., Sect. B, 1983, 39, 266 CrossRef.
  7. P. Frocyen, Phosphorus, Sulfur, Silicon, Relat. Elem., 1993, 81, 1; 37.
  8. J. R. Merchant, R. J. Shah and R. M. Bhandakar, Recl. Trav. Chim. Pays-Bas, 1962, 81, 131 CAS.
  9. M. Rai, S. Kumar, B. Singh, K. Krishnan and A. Singh, J. Indian Chem. Soc., 1982, 59, 80 Search PubMed.
  10. D. W. Allen, P. E. Cropper, P. G. Smithurst, P. R. Ashton and B. F. Taylor, J. Chem. Soc., Perkin Trans. 1, 1986, 1989 RSC.
  11. J. P. Schroeder and D. C. Schroeder, J. Org. Chem., 1968, 33, 591 CrossRef CAS; S. J. Smith, H. Zimmer, E. Fluck and P. Fischer, Phosphorus Sulfur, 1988, 35, 105 Search PubMed.
  12. P. Grammaticakis and H. Texier, Bull. Soc. Chim. Fr., 1971, 1323 CAS.
  13. A. S. Wheeler, J. Am. Chem. Soc., 1913, 35, 977.
  14. M. Nakamura, K. Komatsu, Y. Gondo, K. Ohta and Y. Ueda, Chem. Pharm. Bull., 1967, 15, 585 CAS.
  15. A. Senier and R. B. Forster, J. Chem. Soc., 1914, 105, 2470 Search PubMed.
  16. G. M. Janini, A. M. Ai-Ghoul and G. H. Hovakeemian, Mol. Cryst. Liq. Cryst., 1989, 172, 69 CAS.
  17. R. v. Walther and W. Raetze, J. Pr. Chem. 2, 1902, 65, 265 Search PubMed.
  18. M. L. Crossley, P. F. Dreisbach, C. M. Hofmann and R. P. Parker, J. Am. Chem. Soc., 1952, 74, 573 CrossRef CAS.
  19. G. Guastalla, Atti R. Accad. Sci. Torino, 1928, 63, 128 Search PubMed; Chem. Zentralbl., 1928, II, 984 Search PubMed.
  20. D. M. Ritter, J. Am. Chem. Soc., 1947, 69, 46 CrossRef CAS.
  21. (a) G. Kaupp, M. Haak and F. Toda, J. Phys. Org. Chem., 1995, 8, 545 CrossRef CAS; (b) G. Kaupp, J. Schmeyers, F. Toda, H. Takumi and H. Koshima, ibid., 1996, 9, 795 Search PubMed.
  22. G. Kaupp, in Comprehensive Supramolecular Chemistry., ed. J. E. D. Davies and J. A. Ripmeester, Elsevier, Oxford, 1996, vol. 8, p. 381–423 Search PubMed; Chemie unserer Zeit, 1997, 31, 129, English translation available at http://kaupp.chemie.uni-oldenburg.de Search PubMed.
  23. N. B. Singh, R. J. Singh and N. P. Singh, Tetrahedron, 1994, 50, 6441–6493 CrossRef CAS the term ‘surface migration’ remained largely unspecified.
  24. M. C. Etter and D. A. Adsmond, J. Chem. Soc., Chem. Commun., 1990, 589 RSC; M. C. Etter, G. M. Frankenbach and J. Bernstein, Tetrahedron Lett., 1989, 30, 3617 CrossRef CAS.
  25. D. Britton, J. Chem. Crystallogr., 1994, 24, 553 CAS.
  26. G. Kaupp and A. Herrmann, J. Phys. Org. Chem., 1997, 10, 675 CrossRef CAS; G. Kaupp, A. Herrmann and M. Haak, J. Vac. Sci. Technol. B, 1997, 15, 1521 CrossRef CAS; G. Kaupp and A. Herrmann, Ultramicroscopy, 1998, in the press Search PubMed.
  27. M. Colapietro, A. Domenicano, C. Marciante and G. Portalone, Z. Naturforsch., Teil B, 1982, 37, 1309 Search PubMed data in Cambridge Database the 120K structure ( M. Tonogaki, T. Kawata, S. Ohba, Y. Iwata and I. Shibuya, Acta Crystallogr., Sect. B, 1993, 49, 1031 Search PubMed ) has shorter N(H2)–O(NO) distances, 3.034 and 3.087 Å.
  28. F. Iwasaki, Acta Crystallogr., Sect. B, 1977, 33, 1646 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.