Ethylene bromonium and 1-bromoethyl cations and their neutral and anionic counterparts: a tandem mass spectrometry study of dissociations and gas phase redox reactions

(Note: The full text of this document is currently only available in the PDF Version )

Jianglin Wu, Šárka Beranová, Michael J. Polce and Chrys Wesdemiotis


Abstract

The unimolecular chemistry of ethylene bromonium cation (cyclo-CH2CH2Br+, 1+) and 1-bromoethyl cation (CH3CH+Br, 2+) has been probed by metastable ion (MI) characteristics, collisionally activated dissociation (CAD) and neutral fragment reionization (NfR). These isomers undergo many common decompositions but can, nevertheless, be distinguished based on the structurally indicative >˙>CH3vs. CH2 losses. Neutralization–reionization (NR) experiments have further shown that the gas phase reduction of 1+ and 2+ leads to 2-bromoethyl (>˙>CH2CH2Br, 3) and 1-bromoethyl (CH3ĊHBr, 2) radicals, respectively, both of which are stable species. However, from the incipient C2H4Br anions emerging upon charge reversal of 1+ and 2+, only CH3CHBr (2) is found to be a bound anion.


References

  1. J. McMurry, Organic Chemistry, Brooks/Cole, Pacific Grove, 4th edn., 1996 Search PubMed.
  2. G. A. Olah and J. M. Bollinger, J. Am. Chem. Soc., 1967, 89, 4744 CrossRef CAS.
  3. T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, Harper and Row, New York, 3rd edn., 1987 Search PubMed.
  4. J. S. Kim, M. C. Findlay, W. G. Henderson and M. C. Caserio, J. Am. Chem. Soc., 1973, 95, 2184 CrossRef CAS.
  5. R. D. Wieting, R. H. Staley and J. L. Beauchamp, J. Am. Chem. Soc., 1974, 96, 7552 CrossRef CAS.
  6. R. S. Staley, R. D. Wieting and J. L. Beauchamp, J. Am. Chem. Soc., 1977, 99, 5694.
  7. D. W. Berman, V. Anicich and J. L. Beauchamp, J. Am. Chem. Soc., 1979, 101, 1239 CrossRef CAS.
  8. J. L. Holmes, F. P. Lossing and R. A. McFarlane, Int. J. Mass Spectrom. Ion Processes, 1988, 86, 209 CrossRef CAS.
  9. M. Vairamani, R. Srinivas and U. A. Mirza, Org. Mass Spectrom., 1988, 23, 620 CAS.
  10. A. J. R. Heck, L. J. de Koning and N. M. M. Nibbering, Org. Mass Spectrom., 1993, 28, 235 CAS.
  11. A. J. R. Heck, L. J. de Koning and N. M. M. Nibbering, Org. Mass Spectrom., 1993, 28, 245 CAS.
  12. T. P. Hamilton and H. F. Schaefer, III, J. Am. Chem. Soc., 1990, 112, 8260 CrossRef CAS.
  13. R. G. Cooks, J. H. Beynon, R. M. Caprioli and G. R. Lester, Metastable Ions, Elsevier, Amsterdam, 1973 Search PubMed.
  14. J. L. Holmes, Org. Mass Spectrom., 1985, 20, 169 CAS.
  15. K. L. Busch, G. L. Glish and S. A. McLuckey, Mass Spectrometry/Mass Spectrometry, VCH, New York, 1988 Search PubMed.
  16. M. J. Polce, S. Beranová, M. J. Nold and C. Wesdemiotis, J. Mass Spectrom., 1996, 31, 1073 CrossRef CAS.
  17. C. Wesdemiotis and F. W. McLafferty, Chem. Rev., 1987, 87, 485 CrossRef CAS.
  18. J. K. Terlouw and H. Schwarz, Angew. Chem., Int. Ed. Engl., 1987, 26, 805 CrossRef.
  19. J. L. Holmes, Mass Spectrom. Rev., 1989, 8, 513.
  20. M. J. Polce and C. Wesdemiotis, Rapid Commun. Mass Spectrom., 1996, 10, 235 CrossRef CAS.
  21. D. J. Edge and J. K. Kochi, J. Am. Chem. Soc., 1972, 74, 6485 CrossRef.
  22. J. J. Shea, D. C. Lewis and P. S. Skell, J. Am. Chem. Soc., 1973, 75, 7768 CrossRef.
  23. S. P. Maj, M. C. R. Symons and P. M. R. Trousson, J. Chem. Soc., Chem. Commun., 1984, 561 RSC.
  24. E. Tschuikow-Roux, D. R. Salomon and S. Paddison, J. Phys. Chem., 1987, 91, 3037 CrossRef CAS.
  25. J. L. Holmes and F. P. Lossing, J. Am. Chem. Soc., 1988, 110, 7343 CrossRef CAS.
  26. M. J. Polce, M. M. Cordero, C. Wesdemiotis and P. A. Bott, Int. J. Mass Spectrom. Ion Processes, 1992, 113, 35 CrossRef CAS.
  27. M. J. Polce and C. Wesdemiotis, J. Am. Soc. Mass Spectrom., 1996, 7, 573 CrossRef CAS.
  28. P. C. Burgers, J. L. Holmes, A. A. Mommers and J. K. Terlouw, Chem. Phys. Lett., 1983, 102, 1 CrossRef CAS.
  29. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin and W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17, Suppl. 1.
  30. Since the high mass end of the Br+ peaks (m/z 79) is not resolved from adjacent HBr●+ and H2Br+ signals (Fig. 1), accurate kinetic energy releases cannot be calculated for m/z 79. Approximate T0.5 values, obtained from the widths of the low mass halves (× 2) of the Br+ peaks from 1+ and 2+, are 422 and 326 meV, respectively.
  31. C. Wesdemiotis, B. Leyh, A. Fura and F. W. McLafferty, J. Am. Chem. Soc., 1990, 112, 8655 CrossRef CAS.
  32. M. J. Polce, Y. Kim and C. Wesdemiotis, Int. J. Mass Spectrom. Ion Processes, in the press Search PubMed.
  33. Š. Beranová and C. Wesdemiotis, J. Am. Soc. Mass Spectrom., 1994, 5, 1093 CrossRef CAS.
  34. V. Q. Nguyen and F. Turecek, J. Mass Spectrom., 1996, 31, 843 CrossRef CAS.
  35. Judging from the comparable relative abundances of C2H0–4+ in the NR spectra of 1+ and 2+(Fig. 4), the proportion of neutral 1(or 3) that dissociates is rather small.
Click here to see how this site uses Cookies. View our privacy policy here.