Marine metabolites and metal ion chelation. Circular dichroism studies of metal binding to Lissoclinum cyclopeptides

(Note: The full text of this document is currently only available in the PDF Version )

David J. Freeman, Gerald Pattenden, Alex F. Drake and Giuliano Siligardi


Abstract

Variable temperature circular dichroism (CD) spectra of the patellamides A (3), B (4) and E (5), isolated from the ascidian (‘sea squirt’) Lissoclinum patella, show that they have very similar thermodynamically preferred macrocyclic ring conformations. In addition, the CD profile of the ‘figure eight like’ conformation 10 in the patellamides has been defined, and CD spectroscopy is shown to provide an insight into the interconversions between the limiting conformations, 9 and 10, in this family of cyclopeptides. The cyclopeptides 3–5 bind both Cu2+ and Zn2+ and CD studies show that as a family, in line with previous studies, they can bind more than one metal ion per molecule. Thus, the first binding domain for the three patellamides shows a binding constant in the range 2 × 104 to 2 × 105, and a second binding site for patellamide B (4) has K = 230 (Cu2+) and K = 16–20 (Zn2+). The CD spectra of the patellamide–metal conjugates can be correlated with the ‘square form’ conformation 9 of the cyclopeptides. This best fit situation vis-à-vis metal chelation, could have important implications regarding the biological activity and modus operandi of the cyclopeptides in vivo.


References

  1. See: D. J. Faulkner, Nat. Prod. Rep., 1996, 13, 75 Search PubMed and earlier reviews in this seriesSee also: D. J. Faulkner, Chem. Rev., 1993, 93, 1671 RSC.
  2. J. P. Michael and G. Pattenden, Angew. Chem., Int. Ed. Engl., 1993, 32, 1 CrossRef.
  3. See: S. K. Chattopadhyay and G. Pattenden, Tetrahedron Lett., 1995, 36, 5271 Search PubMed; J. Maddock, G. Pattenden and P. G. Wright, Computer-Aided Molecular Design, 1993, 7, 573 CrossRef CAS and references cited therein.
  4. C. D. J. Boden and G. Pattenden, Tetrahedron Lett., 1994, 35, 8271 CrossRef CAS; C. D. J. Boden and G. Pattenden, Tetrahedron Lett., 1995, 36, 6153 CrossRef CAS See also M. Norley and G. Pattenden, Tetrahedron Lett., 1996, 37, 9111 Search PubMed and references therein; P. Wipf and P. C. Fritch, J. Am. Chem. Soc., 1996, 118, 12 358 CrossRef CAS.
  5. For example: Lissoclinamides: B. M. Degnan, C. J. Hawkins, M. F. Lavin, E. J. McCaffrey, D. L. Parry, A. L. van den Brenk and D. J. Watters, J. Med. Chem., 1989, 32, 1349 Search PubMed; C. J. Hawkins, M. F. Lavin, K. A. Marshall, A. L. van den Brenk and D. J. Watters, J. Med. Chem., 1990, 33, 1632 CrossRef CAS See also ref. 12 below. Tawicyclamides A and B: L. A. McDonald, M. P. Foster, D. R. Phillips, C. M. Ireland, A. Y. Lee and J. Clardy, J. Org. Chem., 1992, 57, 4616 Patellins: T. M. Zabriskie, M. P. Foster, T. J. Stout, J. Clardy and C. M. Ireland, J. Am. Chem. Soc., 1990, 112, 8080 Search PubMed For a review of metabolites from L. patella and other ascidians see; B. S. Davidson, Chem. Rev., 1993, 93, 1771 CrossRef CAS.
  6. For a recent review see: P. Wipf, Chem. Rev., 1995, 59, 2115 Search PubMed See also: Y. Hamada, M. Shibata and T. Shioiri, Tetrahedron Lett., 1985, 26, 5159 CrossRef; Y. Hamada, M. Shibata and T. Shioiri, Tetrahedron Lett., 1985, 26, 6501 Search PubMed; U. Schmidt and H. Griesser, Tetrahedron Lett., 1986, 27, 163 CrossRef CAS; Y. Hamada, S. Kato and T. Shioiri, Tetrahedron Lett., 1986, 26, 3223 CrossRef CAS and references under ref. 4 above.
  7. For example: P. Wipf, S. Venkatraman, C. P. Miller and S. J. Geib, Angew. Chem., Int. Ed. Engl., 1994, 33, 1516 Search PubMed see also refs. 9 and 10.
  8. C. M. Ireland, A. R. Durso Jr., R. A. Newman and M. P. Hacker, J. Org. Chem., 1982, 47, 1807 CrossRef CAS; J. E. Biskupiak and C. M. Ireland, J. Org. Chem., 1983, 48, 2302 CrossRef CAS; L. A. McDonald and C. M. Ireland, J. Nat. Prod., 1992, 55, 376 CrossRef CAS.
  9. A. L. van den Brenk, D. P. Fairlie, G. R. Hanson, L. R. Gahan, C. J. Hawkins and A. Jones, Inorg. Chem., 1994, 33, 2280 CrossRef CAS.
  10. A. L. van den Brenk, K. A. Byriel, D. P. Fairlie, L. R. Gahan, G. R. Hanson, C. J. Hawkins, A. Jones, C. H. L. Kennard, B. Moubaraki and K. S. Murray, Inorg. Chem., 1994, 33, 3549 CrossRef CAS.
  11. Y. In, M. Doi, M. Inoue, T. Ishida, Y. Hamada and T. Shioiri, Chem. Pharm. Bull., 1993, 41, 1686 CAS.
  12. F. J. Schmitz, M. B. Ksebati, J. S. Chang, J. L. Wang, M. B. Hossain and D. J. van den Helm, J. Org. Chem., 1989, 54, 3463 CrossRef CAS.
  13. T. Ishida, Y. In, F. Shinozaki, M. Doi, D. Yamamoto, Y. Hamada, T. Shioiri, M. Kamigauchi and M. Sugiura, J. Org. Chem., 1995, 60, 3944 CrossRef CAS.
  14. G. Abbenante, D. P. Fairlie, L. R. Gahan, G. R. Hanson, G. K. Pierens and A. L. van den Brenk, J. Am. Chem. Soc., 1996, 118, 10 384 CrossRef CAS.
  15. G. Siligardi and A. F. Drake: The importance of extended conformations and in particular, the PII conformation for the molecular recognition of peptides: Biopolymers (Peptide Science) 1995, 37, 281 Search PubMed.
  16. G. Siligardi, A. F. Drake, P. Mascagni, D. Rowlands, F. Brown and W. Gibbons, Eur. J. Biochem., 1991, 199, 545 CAS; Int. J. Peptide Protein Res., 1991, 38, 519 Search PubMed.
  17. (a) D. W. Marquarat, J. Soc. Ind. Appl. Maths. 2, 1963, 431 Search PubMed; (b) A. F. Drake, unpublished work.
Click here to see how this site uses Cookies. View our privacy policy here.