Reaction of RuO4 with carbon–carbon double bonds. Part 8.1 Reaction of 7,8-didehydrocholesteryl acetate and cholesteryl acetate with RuO4 and OsO4. A comparative view

(Note: The full text of this document is currently only available in the PDF Version )

Laura Albarella, Maria Lasalvia, Vincenzo Piccialli and Donato Sica


Abstract

The title reactions have been studied. The first formed compound from the oxidation of 7,8-didehydrocholesteryl acetate with RuO4 performed in acetone–water (5∶1), both at room temperature and –70 °C, is the ruthenium(VI) diester 5. In mild acidic conditions compound 5 converts into the isomeric compound 6 that in turn is in equilibrium in the same conditions with a third isomeric ruthenium(VI) diester, 2, a compound previously isolated from the same oxidative process conducted at –70 °C. The structural relationship between the isomeric compounds 2, 5 and 6 has been established by careful spectral analyses and comparison of their NMR properties with those exhibited by the osmium-containing analogues (7 and 8) of the ruthenate esters 2 and 5, synthesized by reaction of 7,8-didehydrocholesteryl acetate with OsO4 in dioxane. The RuO4 oxidation of cholesteryl acetate at room temperature also furnishes two ruthenium(VI) diesters (9 and 10) structurally analogous to compounds 2 and 5. NMR evidence is reported that the Ru[double bond, length half m-dash]O and Os[double bond, length half m-dash]O groups possess similar magnetic anisotropy. The isomerization process involving the ruthenate esters of 7,8-didehydrocholesteryl acetate has also been studied by 1H NMR spectroscopy and is briefly discussed.


References

  1. For part 7 see ref. 7.
  2. V. Piccialli, D. Sica and D. Smaldone, Tetrahedron Lett., 1994, 35, 7093 CrossRef CAS.
  3. D. G. Lee and M. van den Engh, The oxidation of organic compounds by RuO4, in Oxidation in Organic Chemistry, ed. W. S. Trahanovsky, Academic Press, New York, 1973, vol. 5, part B, ch. 4 Search PubMed.
  4. A. Migliuolo, V. Piccialli and D. Sica, Tetrahedron, 1991, 47, 7937 CrossRef CAS.
  5. V. Piccialli, D. Smaldone and D. Sica, Tetrahedron, 1993, 49, 4211 CrossRef CAS.
  6. G. Notaro, V. Piccialli, D. Smaldone and D. Sica, Tetrahedron, 1994, 50, 4835 CrossRef CAS.
  7. L. Albarella, V. Piccialli, D. Smaldone and D. Sica, J. Chem. Res., 1996, (S) 400; (M) 2442 Search PubMed.
  8. K. B. Sharpless and K. Akashi, J. Am. Chem. Soc., 1976, 98, 1986 CrossRef CAS.
  9. T. K. M. Shing, E. K. W. Tam, V. W.-F. Tai, I. H. F. Chung and Q. Jiang, Chem. Eur. J., 1996, 2, 5057.
  10. R. A. Johnson and K. B. Sharpless, in Catalytic Asymmetric Synthesis, ed. Iwao Ojima, VCH, Weinheim, 1993, pp. 227–272 Search PubMed.
  11. (a) P. O. Norrby, C. H. Kolb and B. K. Sharpless, Organometallics, 1994, 13, 344 CrossRef CAS; (b) P. O. Norrby, C. H. Kolb and B. K. Sharpless, J. Am. Chem. Soc., 1996, 118, 35 CrossRef CAS.
  12. K. A. Jorgensen and R. Hoffmann, J. Am. Chem. Soc., 1986, 108, 1867 CrossRef.
  13. (a) K. Tomioka, M. Nakajima and K. Koga, J. Am. Chem. Soc., 1987, 198, 6213 CrossRef; (b) K. Tomioka, M. Nakajima, Y. Itaka and K. Koga, Tetrahedron Lett., 1988, 29, 573 CrossRef CAS; (c) K. Tomioka, M. Nakajima and K. Koga, J. Chem. Soc., Chem. Commun., 1989, 1921 RSC; (d) K. Tomioka, M. Nakajima and K. Koga, Tetrahedron Lett., 1990, 31, 1741 CrossRef CAS.
  14. (a) E. J. Corey, P. D. Jardine, S. Virgil, P.-W. Yuen and D. Connel, J. Am. Chem. Soc., 1989, 111, 9243 CrossRef CAS; (b) E. J. Corey and G. I. Lotto, Tetrahedron Lett., 1990, 31, 2665 CrossRef; (c) E. J. Corey, M. C. Noe and S. Sarshar, J. Am. Chem. Soc., 1993, 115, 3828 CrossRef CAS; (d) E. J. Corey and M. C. Noe, J. Am. Chem. Soc., 1993, 115, 12 579 CrossRef CAS; (e) E. J. Corey, M. C. Noe and S. Sarshar, Tetrahedron Lett., 1994, 35, 2861 CrossRef CAS; (f) E. J. Corey, M. C. Noe and M. J. Grogan, Tetrahedron Lett., 1994, 35, 6427 CrossRef CAS; (g) E. J. Corey, A. Guzman-Perez and M. C. Noe, J. Am. Chem. Soc., 1994, 116, 12 109 CrossRef CAS; (h) E. J. Corey, A. Guzman-Perez and M. C. Noe, J. Am. Chem. Soc., 1995, 117, 10 805 CrossRef CAS; (i) E. J. Corey, A. Guzman-Perez and M. C. Noe, J. Am. Chem. Soc., 1995, 117, 10 817 CrossRef CAS; (j) E. J. Corey and M. C. Noe, J. Am. Chem. Soc., 1996, 118, 319 CrossRef CAS; (k) E. J. Corey, M. C. Noe and M. J. Grogan, Tetrahedron Lett., 1996, 37, 4899 CrossRef CAS.
  15. (a) U. Pidun, C. Boehme and G. Frenking, Angew. Chem., Int. Ed. Engl., 1996, 35, 2817 CrossRef CAS; (b) A. Veldkamp and G. Frenking, J. Am. Chem. Soc., 1994, 116, 4937 CrossRef CAS.
  16. CHCl3 was of analytical grade (99.5%; acidity 5 × 10 –3 meq g–1).
  17. J. K. H. Bridgemann, P. C. Cherry, A. S. Clegg, J. M. Evans, E. R. H. Jones, A. Kasal, V. Kumar, G. D. Meakins, Y. Morisawa, E. E. Richards and P. D. Woodgate, J. Chem. Soc. C, 1970, 250 RSC.
  18. In all the ruthenate and osmate esters that we have so far studied, the carbons geminal to the metal resonated in the range 80–100 ppm.
  19. In a previous work (L. Albarella, F. Giordano, M. Lasalvia, V. Piccialli and D. Sica, Tetrahedron Lett., 1995, 36, 5267) on the RuO4 oxidation of α-pinene we hypothesized that ruthenium(VI) diesters possess a structure similar to that of osmium(VI) diesters in which the metal adopts a square-based pyramidal five-coordination Search PubMed.
  20. 3β-Acetoxy-5-hydroxy-5α-cholestan-6-one and 5α-cholestane-3β,5, 6α-triol 3-acetate, the final oxidation products of cholesteryl acetate, were both present in the filtrate of the reaction mixture; their yields were as previously described (ref. 5).
Click here to see how this site uses Cookies. View our privacy policy here.