Accelerating effect of meta substituents in the ester-mediated nucleophilic aromatic substitution reaction

(Note: The full text of this document is currently only available in the PDF Version )

Tetsutaro Hattori, Ayanobu Takeda, Kenji Suzuki, Nobuyuki Koike, Eiji Koshiishi and Sotaro Miyano


Abstract

The ester-mediated nucleophilic aromatic substitution (SNAr) reaction of 2-methoxybenzoic ester 1 with Grignard reagents 11 is greatly accelerated by introduction of a methoxy or halo substituent at the 3-position of the benzoate ring (7–10). The substituent effects of these groups at the 3-position are compared with those at the 5-position to suggest that the activation mechanism of the methoxy substituent is different from that of the halo substituent; the ligating ability of the 3-methoxy group plays a crucial role in enhancing the reactivity of the 2-methoxy moiety, while the electron-withdrawing ability is more important in the case of the halo groups. It has also been found that introduction of an additional methoxy substituent at the meta-position (33, 34) enables the SNAr methoxy-displacement reaction even at the para-position to the ester activator. The accelerating effect of the 3-bromo substituent is advantageously utilized for regioselective allylation of 3-bromo-2,6-dimethoxybenzoic ester 55 at the 2-position to provide an easy access to a multisubstituted naphthol 59, which is a key compound for the syntheses of michellamines A–C and the related naphthylisoquinoline alkaloids.


References

  1. Review: T. Hattori and S. Miyano, Yuki Gosei Kagaku Kyokaishi, 1997, 55, 121 (Chem. Abstr., 1997, 126, 199293) Search PubMed.
  2. Reviews: T. G. Gant and A. I. Meyers, Tetrahedron, 1994, 50, 2297 Search PubMed; M. Reuman and A. I. Meyers, Tetrahedron, 1985, 41, 837 CrossRef CAS.
  3. Preliminary communication: T. Hattori, N. Koike, T. Satoh and S. Miyano, Tetrahedron Lett., 1995, 36, 4821 Search PubMed.
  4. R. C. Fuson and D. H. Chadwick, J. Org. Chem., 1948, 13, 484 CrossRef CAS; R. C. Fuson, R. Gaertner and D. H. Chadwick, J. Org. Chem., 1948, 13, 489 CrossRef CAS.
  5. R. C. Fuson and R. Gaertner, J. Org. Chem., 1948, 13, 496 CrossRef CAS.
  6. R. H. Hutchings and A. I. Meyers, J. Org. Chem., 1996, 61, 1004 CrossRef CAS.
  7. K. M. Wells, Y. Shi, J. E. Lynch, G. R. Humphrey, R. P. Volante and P. J. Reider, Tetrahedron Lett., 1996, 37, 6439 CrossRef CAS.
  8. T. Hattori, T. Suzuki, N. Hayashizaka, N. Koike and S. Miyano, Bull. Chem. Soc. Jpn., 1993, 66, 3034 CAS.
  9. T. Hattori, N. Koike and S. Miyano, J. Chem. Soc., Perkin Trans. 1, 1994, 2273 RSC.
  10. T. Hattori, H. Hotta, T. Suzuki and S. Miyano, Bull. Chem. Soc. Jpn., 1993, 66, 613 CAS For extensions of the chelation-assisted SNAr reaction to other activating substituents, see: T. Hattori, M. Suzuki, N. Tomita, A. Takeda and S. Miyano, J. Chem. Soc., Perkin Trans. 1, 1997, 1117 Search PubMed; T. Hattori, J. Sakamoto, N. Hayashizaka and S. Miyano, Synthesis, 1994, 199 RSC.
  11. N. Koike, T. Hattori, A. Takeda, Y. Okaishi and S. Miyano, Chem. Lett., 1997, 641 CrossRef CAS.
  12. R. Häner, T. Laube and D. Seebach, J. Am. Chem. Soc., 1985, 107, 5396 CrossRef; D. Seebach, R. Amstutz, T. Laube, W. B. Schweizer and J. D. Dunitz, J. Am. Chem. Soc., 1985, 107, 5403 CrossRef CAS; K. Tomioka, M. Shindo and K. Koga, J. Org. Chem., 1990, 55, 2276 CrossRef CAS.
  13. M. R. Boyd, Y. F. Hallock, J. H. Cardellina II, K. P. Manfredi, J. W. Blunt, J. B. McMahon, R. W. Buckheit Jr., G. Bringmann, M. Schäffer, G. M. Cragg, D. W. Thomas and J. G. Jato, J. Med. Chem., 1994, 37, 1740 CrossRef CAS.
  14. Y. F. Hallock, K. P. Manfredi, J. W. Blunt, J. H. Cardellina II, M. Schäffer, K.-P. Gulden, G. Bringmann, A. Y. Lee, J. Clardy, G. François and M. R. Boyd, J. Org. Chem., 1994, 59, 6349 CrossRef CAS; G. Bringmann, R. Zagst, H. Reuscher and L. A. Assi, Phytochemistry, 1992, 31, 4011 CrossRef CAS.
  15. T. R. Hoye and L. Mi, J. Org. Chem., 1997, 62, 8586 CrossRef CAS.
  16. G. Bringmann, R. Götz, P. A. Keller, R. Walter, P. Henschel, M. Schäffer, M. Stäblein, T. R. Kelly and M. R. Boyd, Heterocycles, 1994, 39, 503.
  17. T. R. Hoye and L. Mi, Tetrahedron Lett., 1996, 37, 3097 CrossRef CAS; T. Watanabe, K. Kamikawa and M. Uemura, Tetrahedron Lett., 1995, 36, 6695 CrossRef CAS; M. Watanabe, S. Hisamatsu, H. Hotokezaka and S. Furukawa, Chem. Pharm. Bull., 1986, 34, 2810 CAS.
  18. P. D. Hobbs, V. Upender, J. Liu, D. J. Pollart, D. W. Thomas and M. I. Dawson, Chem. Commun., 1996, 923 RSC; B. Tarnchompoo, C. Thebtaranonth and Y. Thebtaranonth, Synthesis, 1986, 785 CrossRef CAS.
  19. M. P. Sibi, J. W. Dankwardt and V. Snieckus, J. Org. Chem., 1986, 51, 271 CrossRef CAS.
  20. C. D. Hurd and C. N. Webb, J. Am. Chem. Soc., 1936, 58, 941 CrossRef CAS; H. Pudleiner and H. Laatsch, Synthesis, 1989, 286 CrossRef CAS.
  21. S. D. Wyrick, F. T. Smith, W. E. Kemp and A. A. Grippo, J. Med. Chem., 1987, 30, 1798 CrossRef CAS.
  22. I. N.-Duvaz, V. Feyns, V. Savaniu, M. Ionescu, A. Serban and A. Cambanis, Rev. Roum. Chim., 1969, 14, 535 Search PubMed.
  23. T. Hattori, N. Hayashizaka and S. Miyano, Synthesis, 1995, 41 CrossRef CAS.
  24. T. Hattori, T. Satoh and S. Miyano, Synthesis, 1996, 514 CrossRef CAS.
  25. T. Hattori, S. Satoh and S. Miyano, Bull. Chem. Soc. Jpn., 1993, 66, 3840 CAS.
  26. A. I. Meyers, R. Gabel and E. D. Mihelich, J. Org. Chem., 1978, 43, 1372 CrossRef CAS.
  27. Z. Horii, M. Hanaoka, S. Kim and Y. Tamura, J. Chem. Soc., 1963, 3940 RSC.