Easy access to various substituted 4-aminocyclopentenes by rearrangement of 2-ethenyl-substituted cyclopropylamines

(Note: The full text of this document is currently only available in the PDF Version )

Craig M. Williams and Armin de Meijere


Abstract

A variety of 2-ethenyl-substituted cyclopropylamines upon flash vacuum pyrolysis or under silver nitrate catalysis cleanly undergo ring enlargement and afford high yields (up to 95%) of 4-aminocyclopent-1-enes, some of which have unprecedented substitution patterns.


References

  1. (a) D. Bouzard, P. Di Cesare, M. Essiz, J. P. Jacquet, P. Remuzon, A. Weber, T. Oki and M. Masuyoshi, J. Med. Chem., 1989, 32, 537 CrossRef CAS; (b) A. Piergentili, P. Angeli, M. Giannella, M. Pigini, W. Quaglia and S. K. Tayebati, Arzneim. Forsch., 1996, 46, 99 Search PubMed; (c) D. F. Morrow, P. C. Johnson, H. Torabi, D. Williams, D. L. Wedding, J. W. Craig and R. F. Majewski, J. Med. Chem., 1973, 16, 736 CrossRef CAS; (d) S. Kamata, N. Haga, T. Tsuri, K. Uchida, H. Kakushi, H. Arita and K. Hanasaki, J. Med. Chem., 1990, 33, 299; (e) D. P. Curran, S. A. Gothe and S.-M. Choi, Heterocycles, 1993, 35, 1371 CAS.
  2. (a) K. C. Murdock and R. B. Angier, J. Org. Chem., 1962, 27, 3317 CAS; (b) R. D. Elliot, G. A. Rener, J. M. Riordan, J. A. Secrist III, L. L. Bennett, Jr., W. B. Parker and J. A. Montgomery, J. Med. Chem., 1994, 37, 739 CrossRef; (c) M. Koga and S. W. Schneller, Tetrahedron Lett., 1990, 31, 5861 CrossRef CAS; (d) K. C. Murdock and R. B. Angier, Tetrahedron Lett., 1962, 415 CrossRef CAS; (e) J. Béres, Gy. Sági, I. Tömösközi, L. Gruber, E. Baitz-Gács, L. Ötvös and E. De Clercq, J. Med. Chem., 1990, 33, 1353 CrossRef CAS; (f) M. Legraverend, C. Huel, J. Guilhem and E. Bisagni, Carbohydr. Res., 1992, 228, 21 CrossRef CAS; (g) F. Girard, C. Demaison, M.-G. Lee and L. A. Agrofoglio, Tetrahedron, 1998, 54, 8745 CrossRef CAS.
  3. (a) K. C. Murdock and R. B. Angier, J. Org. Chem., 1962, 27, 2395 CAS; (b) K. Hammer and K. Undheim, Tetrahedron, 1997, 53, 2309 CrossRef CAS.
  4. T. Hudlicky, D. A. Becker, R. L. Fan and S. Kozhushkov, in Methods of Organic Chemistry(Houben-Weyl), ed. A. de Meijere, Thieme, Stuttgart, 1997, vol. E 17c, p. 2538 Search PubMed.
  5. (a) C. M. Williams, V. Chaplinski, P. R. Schreiner and A. de Meijere, Tetrahedron Lett., 1998, 39, 7695 CrossRef CAS; (b) A. de Meijere, A. Kourdioukov, V. Chaplinski, M. Kordes and C. M. Williams, unpublished work.
  6. H. G. Richey, Jr. and D. W. Shull, Tetrahedron Lett., 1976, 575 CrossRef.
  7. Even higher temperatures resulted in decomposition and lower temperatures afforded more starting material.
  8. H. M. Frey and R. K. Solly, J. Chem. Soc. (B), 1970, 996 RSC.
  9. (a) J. M. Simpson and H. G. Richey, Tetrahedron Lett., 1973, 2545 CrossRef CAS; (b) G. McGaffin, B. Grimm, U. Heinicke, H. Michaelsen, A. de Meijere and R. Walsh, unpublished work.
  10. L. J. Morris, Chem. Ind., 1962, 1239 Search PubMed ; silica gel [200 g] was suspended in acetonitrile [∼400 ml] to which was added a solution of silver nitrate [40 g] in acetonitrile [∼50 ml]. The solvent was then slowly evaporated [1 Torr] and the silica gel placed in an oven [80 °C] or in an evacuated flask [0.01 Torr] for 24 h.
Click here to see how this site uses Cookies. View our privacy policy here.