Synthesis of isochroman-3-ylacetates and isochromane-γ-lactones through rearrangement of aryldioxolanylacetates

(Note: The full text of this document is currently only available in the PDF Version )

Robin G. F. Giles, Rodney W. Rickards and Badra S. Senanayake


Abstract

Lewis acid catalysed rearrangement of methyl 4,5-trans-4-aryldioxolan-5-ylacetates 1 provides a convenient route to substituted methyl isochroman-3-ylacetates 2 and isochromane-γ-lactones 3. The choice of Lewis acid is determined by the substitution pattern of the aromatic ring. The two contiguous isochromane stereocentres are transferred unchanged from the parent dioxolanes, while the configuration of the isochromane methyl group is dependent upon the aryl substitution, the reagent and the reaction conditions. Thus treatment of the C-2 epimeric 3′,5′-dimethoxyphenyldioxolanes 4 and 5 with camphorsulfonic acid afforded a mixture of the C-5 epimeric isochromane lactones 26 and 29, the former being favoured at lower acid concentrations, the latter at higher concentrations. Titanium tetrachloride isomerised the analogous 2′-chloro-5′-methoxyphenyldioxolanes 6 and 7 into the methyl isochroman-3-ylacetate 38, which could be lactonised to the isochromane lactone 27. Phosphoric acid converted the 2′,5′-dimethoxyphenyldioxolanes 8 and 9 into a mixture of the isochromane lactones 28 and 31, while similar treatment of the hydroxylactone 22 in the presence of acetaldehyde afforded the isochromane lactone 28 directly and with complete diastereoselectivity. Oxidative demethylation and annulation of this isochromane lactone 28 afforded 5-epi-7-deoxykalafungin 41.


References

  1. R. G. F. Giles, I. R. Green, L. S. Knight, V. R. Lee Son and S. C. Yorke, J. Chem. Soc., Perkin Trans. 1, 1994, 1, 865 RSC.
  2. (a) T. Mukaiyama, Org. React., 1982, 28, 203 CAS; (b) T. Mukaiyama, Angew. Chem., Int. Ed. Engl., 1977, 16, 817 CrossRef.
  3. R. G. F. Giles, R. W. Rickards and B. S. Senanayake, J. Chem. Soc., Perkin Trans. 1, 1996, 2241 RSC.
  4. R. G. F. Giles, R. W. Rickards and B. S. Senanayake, J. Chem. Soc., Perkin Trans. 1, 1997, 3361 RSC.
  5. (a) R. H. Thomson, Naturally Occurring Quinones, 2nd edn., Academic Press, London, 1971 Search PubMed; (b) R. H. Thomson, Naturally Occurring Quinones III, Recent Advances, Chapman and Hall, London, 1987 Search PubMed; (c) R. H. Thomson, Naturally Occurring Quinones IV, Recent Advances, Blackie Academic and Professional, Chapman and Hall, London, 1997 Search PubMed.
  6. (a) V. Van Rheenen, R. C. Kelly and D. Y. Cha, Tetrahedron Lett., 1976, 17, 1973 CrossRef; (b) R. Ray and D. S. Matteson, Tetrahedron Lett., 1980, 21, 449 CrossRef CAS.
  7. R. G. F. Giles, P. R. K. Mitchell, G. H. P. Roos and J. M. M. Strümpfer, J. Chem. Soc., Perkin Trans. 1, 1981, 2091 RSC.
  8. S. Tennant and D. Wege, J. Chem. Soc., Perkin Trans. 1, 1989, 2089 RSC.
  9. W. Eisenhuth and H. Schmid, Helv. Chim. Acta, 1958, 41, 2021 CAS.
  10. T. Li and R. H. Ellison, J. Am. Chem. Soc., 1978, 100, 6263 CrossRef CAS.
  11. P. Jacob III, P. S. Callery, A. T. Shulgin and N. Castagnoli, Jr., J Org. Chem., 1976, 41, 3627 CrossRef CAS.
  12. M. Karplus, J. Chem. Phys., 1960, 33, 1842 CrossRef CAS.
  13. D. W. Cameron, D. G. I. Kingston, N. Sheppard and Lord Todd, J. Chem. Soc., 1964, 98 RSC.
  14. T. Kometani and E. Yoshii, J. Chem. Soc., Perkin Trans. 1, 1981, 1191 RSC.
  15. M. A. Brimble and S. J. Stuart, J. Chem. Soc., Perkin Trans. 1, 1990, 881 RSC.
  16. J. E. Baldwin and M. J. Lusch, Tetrahedron, 1982, 38, 2939 CrossRef CAS.
  17. D. B. Denney and L. C. Smith, J. Org. Chem., 1962, 27, 3404 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.