Heteroaryl functionalised diacetylenes: preparation and solid-state reactivity

(Note: The full text of this document is currently only available in the PDF Version )

Abhijit Sarkar and Satya S. Talwar


Abstract

Diacetylenes are known to undergo solid-state topochemical polymerisation to give polydiacetylenes. The reactivity of the monomer is controlled by the arrangement of the molecules in the crystal lattice wherein certain parametric conditions must be met for 1,4-addition to proceed. In the present paper, we investigated the structure–reactivity relationship of a class of diacetylene monomers. Heteroaryl moieties such as thiophene, benzo[b]thiophene and quinoline as one or both directly bound side groups of a diacetylene backbone were used. Thus various symmetrical as well as unsymmetrical diacetylenes were prepared and characterised. The solid-state polymerisation behaviour of these diacetylenes was studied in the light of their single-crystal X-ray structure. It was found that in order to react in the solid state, the diacetylenes must have the required lattice parameters. However, even when the required lattice parameters are met, the diacetylene monomers do not necessarily undergo solid-state 1,4-addition polymerisation, implying the existence of further controlling factors to determine reactivity.


References

  1. S. Okada, H. Matsuda and H. Nakanishi, in Polymeric Materials Encyclopedia, ed. J. C. Salomone, CRC Press, Boca Raton, 1996, p. 8393 Search PubMed; Polydiacetylene, ed. D. Bloor and R. R. Chance, NATO ASI Series, Series E, Applied Sciences No. 102, Martinus Nijhoff, Dordrecht, 1985 Search PubMed.
  2. G. M. J. Schmidt, in Reactivity of Photoexcited Organic Molecules, Wiley, New York, 1967, p. 227 Search PubMed; R. H. Baughman, J. Polym. Sci., Polym. Phys. Ed., 1974, 12, 1511 Search PubMed.
  3. S. Molyneux, H. Matsuda, A. K. Kar, B. J. Wherett, S. Okada and H. Nakanishi, Nonlinear Optics, 1993, 4, 299 Search PubMed; G. Stegeman, B. Lawrence, M. Cha, W. Torruellas, S. Etemad, G. Baker and J. Meth, Technical Digest of the 4th Iketani Conference, Iketani Foundation, Tokyo, 1994, p. 55 Search PubMed; T. Hattori and T. Kobayashi, Chem. Phys. Lett., 1987, 133, 230 Search PubMed.
  4. K. C. Lim, C. R. Fincher, S. A. Casalnuovo and A. J. Heeger, Mol. Cryst. Liq. Cryst., 1984, 105, 329 CAS.
  5. R. H. Baughman and R. R. Chance, J. Chem. Phys., 1980, 73, 4113 CrossRef CAS.
  6. D. Bloor, in Developments in Crystalline Polymers I, Applied Science, Barking, 1982, p. 151 Search PubMed; Comprehensive Polymer Science, Pergamon, Oxford, 1989, vol. 5, p. 233 Search PubMed.
  7. V. Enkelmann, Chem. Mater., 1994, 6, 1337 CrossRef CAS.
  8. M. S. Paley, D. O. Frazier, H. Abeledeyem, S. P. McManus and S. E. Zutaut, J. Am. Chem. Soc., 1992, 114, 3247 CrossRef CAS.
  9. S. S. Talwar, M. Kamath, K. Das and U. C. Sinha, Polym. Commun., 1990, 31, 198 Search PubMed.
  10. A. Sarkar, N. B. Kodali, M. B. Kamath, L. P. Bhagwat and S. S. Talwar, J. Macromol. Sci., Part A: Pure Appl. Chem., in the press Search PubMed.
  11. G. Wegner, Polym. Lett., 1971, 9, 133 Search PubMed.
  12. R. H. Baughman and K. C. Yee, J. Polym. Sci., Polym. Chem. Ed., 1974, 12, 2467 CAS.
  13. Y. Tokura, T. Koda, A. Itsubo, M. Miyabayashi, K. Okuhara and A. Ueda, J. Chem. Phys., 1986, 85, 99 CrossRef CAS.
  14. M. Sukwattanasinitt, X. Wang, L. Li, X. Jiang, J. Kumar, S. K. Tripathi and D. J. Sandman, Chem. Mater., 1998, 10, 27 CrossRef CAS.
  15. A. Sarkar, PhD Thesis, IIT Bombay, India, 1993.
  16. T. Manisekaran, A. Sarkar, S. S. Talwar and J. S. Prasad, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 1995, 268, 101 Search PubMed.
  17. K. Das, U. C. Sinha, S. S. Talwar, M. B. Kamath and R. Bohra, Acta Crystallogr., Sect. C, 1990, 46, 2126 CrossRef.
  18. T. Manisekaran, A. Sarkar, S. S. Talwar and J. S. Prasad, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 1997, 308, 77 Search PubMed.
  19. M. J. Barrow, G. H. W. Milburn, Z. Zeng, A. Sarkar and S. S. Talwar, Acta Crystallogr., Sect. C, 1994, 50, 650 CrossRef.
  20. A. Sarkar and S. S. Talwar, unpublished results.
  21. G. N. Patel, E. N. Duesler, D. Y. Curtin and I. C. Paul, J. Am. Chem. Soc., 1980, 102, 461 CrossRef CAS.
  22. J. J. Mayerle and M. A. Flandera, Acta Crystallogr., Sect. B, 1978, 34, 1374 CrossRef.
  23. J. J. Mayerle, T. C. Clarke and K. Bredfeldt, Acta Crystallogr., Sect. B, 1979, 35, 1519 CrossRef.
  24. H. Nakansihi, H. Matsuda, S. Okada and M. Kato, in Frontiers of Macromolecular Science, ed. T. Saegusa, H. Higashimura and A. Abe, Blackwell, Oxford, 1989, p. 469 Search PubMed.
  25. S. Shimada, A. Masaki, K. Hayamizu, H. Matsuda, S. Okada and H. Nakanishi, Chem. Commun., 1997, 1421 RSC.
  26. A. V. V. Nampoothiri, P. N. Puntambeker, B. P. Singh, R. Sachdeva, A. Sarkar, D. Saha, A. N. Suresh and S. S. Talwar, J. Chem. Phys., 1998, 109, 685 CrossRef CAS.
  27. B. Iddon and R. M. Scrowstod, Adv. Heterocycl. Chem., 1970, 11, 197.
  28. T. B. Patrick and J. C. Honeggar, J. Org. Chem., 1974, 39, 3791 CrossRef CAS.
  29. J. P. Beny, S. N. Dhawan, J. Kagan and S. Sundlass, J. Org. Chem., 1982, 47, 2201 CrossRef CAS.
  30. D. E. Ames, D. Bull and C. Takundwa, Synthesis, 1981, 364 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.