sym-[5.5.5]Heterocyclophanes: structurally well-defined, mixed π/heteroatom-donor macrobicyclic cages

(Note: The full text of this document is currently only available in the PDF Version )

Jens Hansen, Alexander J. Blake, Wan-Sheung Li and Mark Mascal


Abstract

Structural considerations for achieving conformational stability in cyclophanes are applied as design criteria in the synthesis of sym-[5.5.5]triaza- and sym-[5.5.5]trioxacyclophane macrobicycles. These compounds act as dynamic hosts in which the metal ion migrates between equivalent, C3-related (η1-C)2N2 coordination sites. The metal–arene interaction may alternatively be described as three centre, two-electron σ complexation to the C–H bond. Crystal structures of the copper(I) and silver(I) complexes show that little reorganization is required on the part of the ligand to accommodate the metal, and the former provides an unusual, structurally characterized example of eta-bonding of an arene to CuI.


References

  1. D. J. Cram and H. Steinberg, J. Am. Chem. Soc., 1951, 73, 5691 CrossRef CAS.
  2. J. Dale, Angew. Chem., Int. Ed. Engl., 1966, 5, 1000 Search PubMed.
  3. This naturally assumes that the linking chains provide for a suffcient separation between the two π-systems. For methylene groups, the first odd number to satisfy this condition is 5.
  4. A literature search for [n.n]paracyclophanes and sym-[n.n.n]cyclophanes from n= 5 to 12 was performed where the atoms could be any non-metal with any substituent, but with the condition that the bridging atoms participate in single bonds only. This query produced an equal number of [odd.odd] and [even.even] paracyclophanes (92 each), and 19 [odd.odd.odd]versus 16 [even.even.even]sym-[n.n.n]cyclophanes.
  5. For example, the [-CH2N(CH2)3NCH2-]-bridged-(K. E. Krakowiak and J. S. Bradshaw, J. Heterocycl. Chem., 1996, 33, 1) and [-N-(R)CH2CH2OCH2CH2N(R)-]-bridged-(P. L. Anelli, L. Lunazzi, F. Montanari and S. Quici, J. Org. Chem., 1984, 49, 4197)sym-[7.7.7]cyclophanes Search PubMed.
  6. Cambridge Structural Database Ver. 5.15 (181309 structures, April 1998 release): F. H. Allen and O. Kennard, Chemical Design Automation News, 1993, 8, 31 Search PubMed Note here that no examples of sym-[n.n.n]cyclophanes with saturated bridges occur in the Database.
  7. R. Benn, N. E. Blank, M. W. Haenel, J. Klein, A. R. Koray, K. Weidenhammer and M. L. Ziegler, Angew. Chem., Int. Ed. Engl., 1980, 19, 44 Search PubMed.
  8. This is shown by molecular mechanics simulations (MACRO-MODEL ver. 4.0 with the MM3 force field: F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson and W. C. Still, J. Comput. Chem., 1990, 11, 440). The next conformationally stable homologue, the [7.7.7] cyclophane, has an Ar ⋯ Ar separation some 3 Å greater than the [5.5.5] system Search PubMed.
  9. On the nature of arene η1 and η2 complexes in the solid state, M. Mascal, submitted for publication Search PubMed.
  10. M. Mascal, J.-L. Kerdelhué, A. S. Batsanov and M. J. Begley, J. Chem. Soc., Perkin Trans. 1, 1996, 1141 RSC.
  11. Preliminary communication: M. Mascal, J. Hansen, A. J. Blake and W.-S. Li, Chem. Commun., 1998, 355 Search PubMed.
  12. F. Vögtle and R. G. Lichtenthaler, Angew. Chem., Int. Ed. Engl., 1972, 11, 535 Search PubMed.
  13. M. Kanishi, J. Kunizaki, J. Inanaga and M. Yamaguchi, Bull. Chem. Soc. Jpn., 1981, 54, 3828 CAS.
  14. Review: K. P. C. Vollhardt, Angew. Chem., Int. Ed. Engl., 1984, 23, 539 Search PubMed.
  15. A. J. Hubert, J. Chem. Soc. (C), 1967, 6 RSC.
  16. M. S. Newman and H. S. Lowrie, J. Am. Chem. Soc., 1954, 76, 6196 CrossRef CAS.
  17. Review: R. H. Crabtree, Angew. Chem., Int. Ed. Engl., 1993, 32, 789 Search PubMed.
  18. Cambridge Structural Database refcodes: CELKEJ(01), ENCCBP10, GALTUI, JOBVUR, KAHBIE(10), LEDTIX. The conditions for eta complexation were met when a (generalized) metal was closer to a single carbon atom of an arene ring than to the midpoint of the bond connecting that carbon to the adjacent ring carbon (eta-1), or when the metal was closer to the midpoint of an arene carbon–carbon bond than to either of the carbon atoms between which the bond is made (eta-2). The metal to carbon (or metal to bond midpoint) distance was limited to 3.0 Å and the metal–carbon (or midpoint)–aryl centroid angle was limited to the range 80–1008°.
  19. The equation ΔG=RTc[(22.96 + ln (Tc/δv)] was used: R. K. Harris, Nuclear Magnetic Resonance Spectroscopy—A Physicochemical Approach, Pitman, London, 1983 Search PubMed.
  20. Eta-1 complexation to silver has been discussed (K. Shelly, D. C. Finster, Y. J. Lee, R. Scheidt and C. A. Reed, J. Am. Chem. Soc., 1985, 107, 5955), and a good structural analogy can be drawn between [Ag(1a)]OTf and the (η1)3-silver-deltaphane (1,2,4,5-[2.2.2.2.2.2]cyclophane) complex (H. C. Kang, A. W. Hanson, B. Eaton and V. Boekelheide, J. Am. Chem. Soc., 1985, 107, 1979) Search PubMed.
  21. W. P. Cochrane, P. L. Paulson and T. S. Stevens, J. Chem. Soc. (C), 1968, 630 RSC.
  22. G. M. Sheldrick, SHELXS-96, Acta Crystallogr., Sect. A, 1990, 46, 467 CrossRef.
  23. G. M. Sheldrick, SHELXL-96. University of Göttingen, Germany, 1996.
  24. G. M. Sheldrick, SHELXTL/PC ver. 5.03, Siemens Analytical Instrumentation Inc., Madison, WI, USA, 1994.
  25. The United Kingdom Chemical Database Service: D. A. Fletcher, R. F. McMeeking and D. Parkin, J. Chem. Inf. Comput. Sci., 1996, 36, 746 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.