A new efficient route to the phenolic derivatives of chrysene and 5-methylchrysene, precursors to dihydrodiol and diol epoxide metabolites of chrysene and 5-methylchrysene, through Suzuki cross-coupling reaction

(Note: The full text of this document is currently only available in the PDF Version )

Subodh Kumar


Abstract

A new, abbreviated synthesis of 5-methylchrysene (17), 2-hydroxychrysene (16), 8-hydroxy-5-methylchrysene (23), and 2-hydroxy-5-methylchrysene (24) is reported. The phenolic derivatives 16, 23, and 24 can easily be converted to carcinogenic dihydrodiol and diol epoxide metabolites of chrysene and 5-methylchrysene. The method entails the initial Suzuki cross-coupling reaction of naphthalene-2-boronic acid (1) and/or 6-methoxynaphthalene-2-boronic acid (2) with 2-bromo-5-methoxybenzaldehyde (3), methyl 2-bromophenylacetate (4), 2-bromophenylacetone (5), and/or 2-iodo-5-methoxyphenylacetone (6) to produce 2-(2-naphthyl)-5-methoxybenzaldehyde (7), methyl 2-(6-methoxy-2-naphthyl)phenylacetate (8), 2-(2-naphthyl)phenylacetone (9), 2-(2-naphthyl)-5-methoxyphenylacetone (10), and 2-(6-methoxy-2-naphthyl)phenylacetone (11) in 55–98% yields. 2-Methoxychrysene (15) was obtained with high regioselectivity by two different procedures. In the first procedure, the aldehyde function of 7 was elongated with trimethylsulfonium iodide under phase transfer conditions to generate the ethylene oxide 12 which after methanesulfonic acid treatment produced 15. The second procedure involved modification of ester 8 to its aldehyde analogue 14 which was subsequently treated with methanesulfonic acid to produce 15. Phenylacetone 10 was converted by methanesulfonic acid treatment into 8-methoxy-5-methylchrysene (18) with 90% regioselectivity. However, the similar cyclization of phenylacetones 9 and 11 to 5-methylchrysene (17) and 2-methoxy-5-methylchrysene (19) occurred with only 33–50% regioselectivity. The separation of 17 and 19 from their chromatographically similar 6-methylbenz[a]anthracene byproducts 20 and 22 was readily achieved by a chemical method. The methoxy derivatives of chrysene were finally demethylated with boron tribromide to the corresponding phenolic compounds in 90–98% yields.


References

  1. P. G. Wislocki and A. Y. H. Lu, in Polycyclic Aromatic Hydrocarbon Carcinogenesis: Structure-Activity Relationships, eds. S. K. Yang and B. D. Silverman, CRC Press, Boca Raton, FL, 1988, vol. 1, p. 1 and other chapters Search PubMed.
  2. R. E. Lehr, S. Kumar, W. Levin, A. W. Wood, R. L. Chang, A. H. Conney, H. Yagi, J. M. Sayer and D. M. Jerina, in Polycyclic Hydrocarbons and Carcinogenesis, ed. R. G. Harvey, ACS Symposium Monograph No. 283, American Chemical Society, Washington, DC, 1985, p. 63 Search PubMed.
  3. A. Dipple, in DNA Adducts. Identification and Biological Significance, eds. K. Hemminki, A. Dipple, D. E. G. Shuker, F. F. Kadlubar, D. Segerback and H. Bartsch, IARC Scientific Publication # 125, Lyon, France, 1994, p. 107 Search PubMed.
  4. J. DiGiovanni, L. Diamond, R. G. Harvey and T. J. Slaga, Carcinogenesis, 1983, 4, 403 CAS.
  5. A. P. Grollman and S. Shibutani, in DNA Adducts. Identification and Biological Significance, eds. K. Hemminki, A. Dipple, D. E. G. Shuker, F. F. Kadlubar, D. Segerback and H. Bartsch, IARC Scientific Publication # 125, Lyon, France, 1994, p. 385 Search PubMed.
  6. A. K. Basu and J. M. Essigman, Chem. Res. Toxicol., 1988, 1, 1 CrossRef CAS.
  7. P. P. Fu and R. G. Harvey, J. Org. Chem., 1979, 44, 3778 CrossRef CAS.
  8. J. M. Karle, H. D. Mah, D. M. Jerina and H. Yagi, Tetrahedron Lett., 1977, 4021 CrossRef CAS.
  9. R. G. Harvey, J. Pataki and H. Lee, J. Org. Chem., 1986, 51, 1407 CrossRef CAS.
  10. S. Kumar, J. Org. Chem., 1997, 62, 8535 CrossRef CAS.
  11. N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457 CrossRef CAS.
  12. J. Pataki, P. D. Raddo and R. G. Harvey, J. Org. Chem., 1989, 54, 840 CrossRef CAS.
  13. A. S. Kiselyov, H. Lee and R. G. Harvey, J. Org. Chem., 1995, 61, 6123 CrossRef.
  14. S. Amin, J. Camanzo, K. Huie and S. S. Hecht, J. Org. Chem., 1984, 49, 381 CrossRef CAS.
  15. L. J. Diorazio, D. A. Widdowson and J. M. Clough, Tetrahedron, 1992, 48, 8073 CrossRef CAS.
  16. V. Percec, P. Chu and M. Kawasumi, Macromolecules, 1994, 27, 4441 CrossRef CAS.
  17. I. Fleming and M. Woolias, J. Chem. Soc., Perkin Trans. 1, 1979, 829 RSC.
  18. K. Binovic, S. Vrancea, O. Grandet, J. M. Lebourg and R. Porquet, Chim. Ther., 1968, 3, 313 Search PubMed.
  19. J. R. Carson, H. R. Almond, M. D. Brannan, R. J. Carmosin, S. F. Flaim, A. Gill, M. M. Gleason, S. L. Keely, D. W. Ludovici, P. M. Pitis, M. C. Rebarchak and F. J. Villani, J. Med. Chem., 1988, 31, 630 CrossRef CAS.
  20. S. W. Wright, D. L. Hageman and L. D. McClure, J. Org. Chem., 1994, 59, 6095 CrossRef CAS.
  21. M. S. Newman, J. Org. Chem., 1983, 48, 3249 CrossRef CAS.
  22. S. Amin, S. S. Hecht and D. Hoffman, J. Org. Chem., 1981, 46, 2394 CrossRef CAS.
  23. J. W. Cook and R. J. Schoental, J. Chem. Soc., 1945, 288 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.