2′,3′-Anhydrouridine. A useful synthetic intermediate

(Note: The full text of this document is currently only available in the PDF Version )

Anwar Miah, Colin B. Reese, Quanlai Song, Zoë Sturdy, Stephen Neidle, Ian J. Simpson, Martin Read and Emma Rayner


Abstract

2,2′-Anhydro-1-(β-D-arabinofuranosyl)uracil 1 reacts with sodium hydride in dry DMSO to give 2′,3′-anhydrouridine 2. When the latter compound 2 is heated below its melting point or treated with triethylamine in methanol, it isomerises back to the 2,2′-anhydronucleoside 1. Treatment of compound 1 with sodium ethanethiolate or the sodium salt of benzyl mercaptan in the presence of an excess of the corresponding thiol in DMA gives 2′-S-ethyl- or 2′-S-benzyl-2′-thiouridine (4 or 11) in high yield; however, treatment of the 2,2′-anhydronucleoside 1 first with sodium hydride in DMA and then with a deficiency (with respect to sodium hydride) of ethanethiol or benzyl mercaptan gives the corresponding 3′-S-ethyl or 3′-S-benzyl derivative (3 or 12) in high yield. When the 2,2′-anhydronucleoside 1 is allowed to react with an excess of potassium tert-butoxide in DMSO, the 3′,5′-anhydronucleoside 13 is obtained in good yield. The latter compound 13 undergoes hydrolysis in aqueous trifluoroacetic acid to give 1-(β-D-xylofuranosyl)uracil 14 in high yield. The 3′-S-benzyl derivative 12 is converted by Raney nickel desulfurisation into 3′-deoxyuridine 15 which, in turn, is converted into 3′-deoxycytidine 17 in good yield. X-Ray crystallographic data relating to compounds 11 and 12 are also reported.


References

  1. D. M. Brown, D. B. Parihar, A. Todd and S. Varadarajan, J. Chem. Soc., 1958, 3028 RSC.
  2. K. J. Divakar and C. B. Reese, J. Chem. Soc., Perkin Trans. 1, 1982, 1625 RSC.
  3. J. G. Buchanan and D. R. Clark, Carbohydr. Res., 1979, 68, 331 CrossRef CAS.
  4. M. Màrton-Merész, J. Kuszmann, I. Pelczer, L. Pàrkànyi, T. Koritsànszky and A. Kàlmàn, Tetrahedron, 1983, 39, 275 CrossRef CAS.
  5. A. Miah, C. B. Reese and Q. Song, Chem. Commun., 1997, 407 RSC.
  6. J. P. H. Verheyden, D. Wagner and J. G. Moffatt, J. Org. Chem., 1971, 36, 250 CrossRef CAS.
  7. A. Hampton and A. W. Nichol, Biochemistry, 1966, 5, 2076 CrossRef CAS.
  8. J. F. Codington, R. Fecher and J. J. Fox, J. Org. Chem., 1962, 27, 163 CAS.
  9. J. B. Chattopadhyaya and C. B. Reese, J. Chem. Soc., Chem. Commun., 1976, 860 RSC.
  10. G. M. Sheldrick, SHELX-97, a crystallographic structure determination and refinement program, University of Göttingen, 1990.
  11. I. L. Doerr, J. F. Codington and J. J. Fox, J. Org. Chem., 1965, 30, 467 CAS.
  12. K. Kikugawa and T. Ukita, Chem. Pharm. Bull., 1969, 17, 775 CAS.
  13. G. Gosselin, M.-C. Bergogne, J. de Rudder, E. DeClercq and J.-L. Imbach, J. Med. Chem., 1986, 29, 203 CrossRef CAS.
  14. K. J. Divakar and C. B. Reese, J. Chem. Soc., Perkin Trans. 1, 1982, 1171 RSC.
  15. R. Fecher, J. F. Codington and J. J. Fox, J. Am. Chem. Soc., 1961, 83, 1889 CrossRef CAS.
  16. N. C. Yung and J. J. Fox, J. Am. Chem. Soc., 1961, 83, 3060 CrossRef CAS.
  17. G. Kowollik and P. Langen, Chem. Ber., 1968, 101, 235 CAS.
  18. J. J. K. Novák and F. Šorm, Collect. Czech. Chem. Commun., 1973, 38, 1173 CAS.
  19. R. Fathi, B. Goswami, P.-P. Kung, B. L. Gaffney and R. A. Jones, Tetrahedron Lett., 1990, 31, 319 CrossRef CAS.
  20. A. Miah, C. B. Reese and Q. Song, Nucleosides, Nucleotides, 1997, 16, 53 CAS.
  21. J. W. Pflugrath and A. Messerschmidt, MADNES, Munich Area Detector Systems, Enraf-Nonius, Delft, 1990.
Click here to see how this site uses Cookies. View our privacy policy here.