Chiral C2-symmetric 2,5-disubstituted pyrrolidine derivatives as catalytic chiral ligands in the reactions of diethylzinc with aryl aldehydes

(Note: The full text of this document is currently only available in the PDF Version )

Min Shi, Yukihiro Satoh and Yukio Masaki


Abstract

Two kinds of chiral C2-symmetric 2,5-disubstituted pyrrolidine derivatives having a β-aminoalcohol moiety have been successfully synthesized and their catalytic abilities of chiral induction have been examined in the reactions of diethylzinc with aryl aldehydes. The production of sec-alcohols having R-absolute configuration could be achieved in very high chemical yield (85–95%) and very high enantiomeric excess (ee) (70–96%) when N-(2′,2′-diphenyl-2′-hydroxyethyl)-(2R,5R)-bis(methoxymethyl)pyrrolidine is used as a chiral ligand. On the other hand, when an N-methyl-(2R,5R)-bis(diarylhydroxymethyl)pyrrolidine is used as a catalyst ligand, the ee of the corresponding sec-alcohols decreases to 20–45% and an interesting inversion of the enantioselectivity is observed in the addition reaction of m-chloro-, p-chloro- and m-fluoro-benzaldehyde with diethylzinc under the same reaction conditions. In the meantime, we have also synthesized some chiral C2-symmetric N-(β-hydroxyethyl)pyrrolidine derivatives which have differently steric sized bulky substituents on the 2,5-position of the pyrrolidine ring and their chiral induction abilities have also been examined under the same reaction conditions. Furthermore, we have prepared a simple chiral C2-symmetric β-aminothiol pyrrolidine derivative. It has also been employed as a chiral ligand for the same addition reaction.


References

  1. H. B. Kagan and T. P. Dang, J. Am. Chem. Soc., 1972, 94, 6429 CrossRef CAS; K. Whitesell, Chem. Rev., 1989, 89, 1581 CrossRef CAS.
  2. Y. Masaki, H. Oda, K. Kazuta, A. Usui, A. Itoh and F. Xu, Tetrahedron Lett., 1992, 33, 5089 CrossRef CAS.
  3. M. Shi, Y. Satoh, T. Makihara and Y. Masaki, Tetrahedron: Asymmetry, 1995, 6, 2109 CrossRef CAS.
  4. T. Katsuki and M. Yamaguchi, J. Synth. Org. Chem. Jpn., 1986, 44, 532 Search PubMed; S. Ikegami, H. Uchiyama, T. Hayama, T. Katsuki and M. Yamaguchi, Tetrahedron, 1988, 44, 5333 CrossRef CAS and references cited therein V. Gouverneur and L. Ghosez, Tetrahedron: Asymmetry, 1990, 1, 363 Search PubMed; Tetrahedron Lett., 1991, 32, 5349 CrossRef CAS.
  5. Y. Kawanami, Y. Ito, T. Kitagawa, Y. Taniguchi, T. Katsuki and M. Yamaguchi, Tetrahedron Lett., 1984, 25, 857 CrossRef CAS.
  6. M. Marzi and D. Misiti, Tetrahedron Lett., 1989, 30, 6075 CrossRef CAS.
  7. S. Takano, M. Moriya, Y. Iwabuchi and K. Ogasawara, Tetrahedron Lett., 1989, 30, 3805 CrossRef CAS.
  8. K. Izawa, S. Nishi and S. Asada, Jpn. Kokai Tokkyo Koko, 6229, 569 [8729, 569](Chem. Abstr., 1987, 106, 213 770v) Search PubMed.
  9. Y. Yamamoto, J. Hoshino, Y. Fujimoto, J. Ohmoto and S. Sawada, Synthesis, 1993, 298 CrossRef CAS.
  10. E. J. Corey, P.-W. Yuen, F. J. Hannon and D. A. Wierda, J. Org. Chem., 1990, 55, 784 CrossRef CAS; R. Noyori and M. Kitamura, Angew. Chem., Int. Ed. Engl., 1991, 30, 49 CrossRef and references cited therein.
  11. N. Oguni, Y. Matsuda and T. Kaneko, J. Am. Chem. Soc., 1988, 110, 7877 CrossRef CAS; M. Kitamura, S. Okada, S. Suga and R. Noyori, ibid., 1989, 111, 4028 Search PubMed.
  12. J. Kang, J. W. Lee and J. I. Kim, J. Chem. Soc., Chem. Commun., 1994, 2009 RSC.
  13. K. Soai, A. Ookawa, K. Ogawa and T. Kaba, J. Chem. Soc., Chem. Commun., 1987, 467 RSC.
  14. Y. Masaki, Y. Satoh, T. Makihara and M. Shi, Chem. Pharm. Bull., 1996, 44, 454 CAS.
  15. M. Kitamura, S. Suga, M. Niwa and R. Noyori, J. Am. Chem. Soc., 1995, 117, 4832 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.