Ring-enlargement reaction of alkylidenecarbenes bearing a cyclic ether or acetal group. Formation of medium-sized cyclic enol ethers or dienol ethers via bicycloalkenyloxonium ylides

(Note: The full text of this document is currently only available in the PDF Version )

Takashi Mori, Masahiko Taniguchi, Fumito Suzuki, Hisashi Doi and Akira Oku


Abstract

The reaction of 2-acetonyltetrahydrofuran 1a and 2-acetonyltetrahydropyran 1b with the potassium salt of dimethyl diazomethylphosphonate (DAMP) in the presence of MeOH produced ring enlargement product 1-methyl-3-oxacyclooctene 6a (22%) and 1-methyl-3-oxacyclononene 6b (28%), respectively, in addition to nonrearranged products. When the side-chain was elongated by one carbon unit (1c), ring enlargement did not take place. Analogous reactions of 2-acetonyl-substituted 1,3-dioxolane 9a, 1,3-dioxane 9b and 1,3-dioxepane 9c also produced, respectively, 3,5-dimethyl-1,6-dioxacycloocta-2,4-diene (16a, 58%), a mixture (combined yield 83%) of 3,5-dimethyl-1,6-dioxacyclonona-2,4-diene (16b) and 5-exo-methylene-3-methyl-1,6-dioxacyclonon-2-ene (17b), and a mixture (combined yield 54%) of 3,5-dimethyl-1,6-dioxacyclodeca-2,4-diene (16e) and 5-exo-methylene-3-methyl-1,6-dioxacyclodec-2-ene (17e). Side-chain-elongated dioxolane 9d did not undergo enlargement and, instead, ring-switched product 3,6-dimethyl-6-[2-(tert-butyloxy)ethoxy]-5,6-dihydropyran 22 was formed. The formation of products 6, 16, 17 and 22 can be explained in terms of the intermediacy of bicyclooxonium ylides, which are formed in an intramolecular manner between the alkylidenecarbene and a cyclic ether or cyclic acetal unit. In most reactions of acetonyl-substituted cyclic acetals, the major products were di(enol ether)s 16 and 17 even in the presence of a protic nucleophile such as MeOH. A reversible intramolecular process between alkylidenecarbenes and ylides is also proposed.


References

  1. K. Kondo, I. Tabushi, R. Noyori and S. Fujita, Carbenes, Ylides, Nitrenes and Benzynes, ed. T. Goto, Hirokawa, Tokyo, 1976 Search PubMed.
  2. The lifetimes of ethereal oxonium ylides are too short for them to be identiWed by spectroscopic methods. Therefore, their intermediacy has been demonstrated indirectly: (a) I. Naito, A. Oku, N. Ohtani, H. Tanimoto and H. Fujiwara, J. Chem. Soc., Perkin Trans. 2, 1996, 725 RSC; (b) T. Sueda, T. Nagaoka, S. Goto and M. Ochiai, J. Am. Chem. Soc., 1996, 118, 10141 CrossRef CAS.
  3. For examples of intermolecular oxonium ylide formation, see: (a) H. Nozaki, H. Takaya and R. Noyori, Tetrahedron Lett., 1966, 7, 2563; (b) K. Friedrich, U. Jansen and W. Kirmse, Tetrahedron Lett., 1985, 26, 193 CrossRef CAS; (c) H. Iwamura and Y. Imahasi, Tetrahedron Lett., 1975, 1401 CrossRef CAS; (d) G. A. Olah, H. Doggweiler and J. D. Felberg, J. Org. Chem., 1984, 49, 2116 CrossRef CAS; (e) M. S. Baird, A. G. W. Baxter, A. Hoorter and I. Jefferson, J. Chem. Soc., Perkin Trans. 1, 1991, 2575 RSC; (f) F. G. West, T. H. Eberlein and R. W. Tester, J. Org. Chem., 1992, 57, 3479 CrossRef CAS; (g) M. P. Doyle, J. H. Griffin, M. S. Chinn and D. van Leusen, J. Org. Chem., 1984, 49, 1917 CrossRef CAS; (h) M. C. Pirrung, W. L. Brown, S. Rege and P. Laughton, J. Am. Chem. Soc., 1991, 113, 8561 CrossRef CAS; (i) J. C. Gilbert and U. Weerasooriya, Tetrahedron Lett., 1980, 21, 2041 CrossRef CAS.
  4. For examples of intramolecular oxonium ylide formation, see: (a) J. S. Clark, A. G. Dossetter and W. G. Whittingham, Tetrahedron Lett., 1996, 37, 5603; (b) J. S. Clark and G. A. Whitlock, Tetrahedron Lett., 1994, 35, 6381 CrossRef CAS; (c) M. C. Pirrung and J. A. Werner, J. Am. Chem. Soc., 1986, 108, 6060 CrossRef CAS.
  5. A. Oku, S. Ohwaki and K. Kimura, Acta Chem. Scand., 1993, 47, 391 CAS.
  6. (a) A. Padwa and S. F. Hornbuckle, Chem. Rev., 1991, 91, 263 CrossRef CAS; (b) A. Padwa and K. E. Krumpe, Tetrahedron, 1992, 48, 5385 CrossRef CAS.
  7. (a) C. J. Moody and R. J. Taylor, J. Chem. Soc., Perkin Trans. 1, 1989, 721 RSC; (b) M. J. Davies, C. J. Heslin and C. J. Moody, J. Chem. Soc., Perkin Trans. 1, 1989, 2473 RSC; (c) M. J. Davies, C. J. Moody and R. J. Taylor, Synlett, 1990, 93 CrossRef CAS.
  8. (a) A. Oku, S. Ohki, T. Yoshida and K. Kimura, Chem. Commun., 1996, 1077 RSC; (b) A. Oku, N. Murai and J. Baird, J. Org. Chem., 1997, 62, 2123 CrossRef CAS; (c) T. Kamada, Ge-Quin, M. Abe and A. Oku, J. Chem. Soc., Perkin Trans. 1, 1996, 413 RSC.
  9. Other diazomethylation reagents such as diazomethyl(trimethyl)-silane in combination with n-BuLi were not successful for this purpose.
  10. For the standard procedure of diazomethylation, see: (a) D. Seyferth, R. S. Marmor and P. Hilbert, J. Org. Chem., 1971, 36, 1379 CrossRef; (b) E. W. Colvin and B. Hamill, J. Chem. Soc., Perkin Trans. 1, 1977, 869 RSC; (c) J. C. Gilbert and U. Weerasooriya, J. Org. Chem., 1979, 44, 4997 CrossRef CAS; (d) J. C. Gilbert, D. H. Giamalva and U. Weerasooriya, J. Org. Chem., 1983, 48, 5251 CrossRef CAS; (e) J. C. Gilbert and B. K. Blackburn, J. Org. Chem., 1986, 51, 3656 and 4087 CrossRef CAS; (f) S. Ohira, K. Okai and T. Moritani, J. Chem. Soc., Chem. Commun., 1992, 721 RSC.
  11. MeOH was used as a protic nucleophile to trap the ylide.
  12. (a) The amount of isolated 7 (R = Me, both a and b) were scanty. Therefore, their structures were determined simply on the basis of 1H NMR spectra. See the Experimental section; (b) when diethyl ether was used as the solvent in place of THF, 7a(R = C2H5O, 3%) was obtained, which was presumed to be formed from oxonium ylide of 3a with diethyl ether.
  13. When oxocan-3-one 238a was treated with DAMP and t-BuOK in diethyl ether under similar reaction conditions, an isomeric mix of ethereal products 24(isomer ratio = 2.5) was isolated in 78% yield. For spectral data of 24, see the Experimental section.
  14. Isolated diene 16a was treated independently over silica gel and was shown to be intact under the same conditions.
  15. Two configurations cis,cis and cis,trans, have been reported for cycloocta-1,3-diene and cyclodeca-1,3-diene, respectively. (a) W. J. Leigh, K. Zheng, N. Nguyen, N. H. Werstiuk and J. Ma, J. Am. Chem. Soc., 1991, 113, 4993 CrossRef CAS; (b) A. T. Blomquist and A. Goldstein, J. Am. Chem. Soc., 1954, 77, 998.
  16. S. Ohira, I. Noda, T. Mizobata and M. Yamato, Tetrahedron Lett., 1995, 36, 3375 CrossRef CAS They presumed that 2-cyanopropionate could be formed from pyruvate via the corresponding azines of diazoalkene [eqn. (9)].
  17. T. Shono, Y. Matsumura, O. Onomura and Y. Yamada, Synthesis, 1987, 1099 CrossRef CAS.
  18. R. Bihovsky, M. U. Kumar, S. Ding and A. Goyal, J. Org. Chem., 1989, 54, 4291 CrossRef CAS.
  19. A. P. Krapcho and A. J. Lovey, Tetrahedron Lett., 1973, 957 CrossRef CAS.
  20. V. Berens and H. D. Scharf, J. Org. Chem., 1995, 60, 5127 CrossRef.
  21. C. S. Marvel and F. D. Hager, Org. Synth., 1932, Coll. Vol. 9, 248.
  22. M. Bertrand, G. Leandri and A. Meou, Tetrahedron, 1981, 37, 1703 CrossRef CAS.
  23. J. A. Hyatt, J. Org. Chem., 1983, 48, 129 CrossRef CAS.
  24. J. C. Gilbert and B. K. Blackburn, J. Org. Chem., 1986, 51, 656.
Click here to see how this site uses Cookies. View our privacy policy here.