Reactions of 5-substituted 3-alkyl- and 3-aryl-isoxazoles with tetrasulfur tetranitride antimony pentachloride complex (S4N4·SbCl5): complete regioselective formation of 4-substituted 3-acyl- and 3-aroyl-1,2,5-thiadiazoles and their mechanism of formation

(Note: The full text of this document is currently only available in the PDF Version )

Kil-Joong Kim and Kyongtae Kim


Abstract

The reactions of 3-alkyl- 5a–f, 3-aryl- 5g–m, 3-acylamido- 5n,p, 3-benzamido- 5o and 3-arylamino- 5q -5-alkyl- and -5-aryl-isoxazoles with tetrasulfur tetranitride antimony pentachloride complex (S4N4·SbCl5) in toluene at 90 °C to reflux temperature give 3-acyl- 6a–c, e, n–q and 3-aroyl-4-substituted-1,2,5-thiadiazoles 6d, f–m in 13 to 61% yields as single isomers. The same reactions of 3,4-dimethyl- 5s, 5v, 4-ethyl-3-methyl- 5t -5-alkyl- and/or 5-aryl-isoxazoles under the same conditions give 3-(1-acetyl-1-chloroethyl)- 8a, 3-(1-benzoyl-1-chloropropyl)- 8b, 3-(1-benzoyl-1-chloroethyl)- 8d, or 3-(1-benzoyl-1-chloroethyl)-4-methyl-1,2,5-thiadiazoles 8c, which are a new type of 1,2,5-thiadiazole derivatives. In addition the reactions with 5-aryl-4-bromoisoxazoles (5,w,y,z) having an electron-donating substituent such as methyl, 4-methylphenyl, and 4-methoxyphenyl groups at C3 under the same conditions afford 3-aroyl-4-substituted-1,2,5-thiadiazoles 6d, 6j and 6k, whereas the starting isoxazoles are recovered from the reactions with 5-aryl-4-bromoisoxazoles 5x,z′ having a phenyl or a 4-chlorophenyl group at C3. A plausible mechanism is proposed for the formation of the products.


References

  1. G. G. Alange and A. J. Banister, J. Inorg. Nucl. Chem., 1978, 40, 203 CAS references are cited therein.
  2. D. Neubauer and J. Weiss, Z. Anorg. Allg. Chem., 1960, 303, 28 CAS.
  3. (a) O. C. M. Davis, J. Chem. Soc., 1906, 89, 1575 Search PubMed; (b) H. Wölbling, Z. Anorg. Allg. Chem., 1908, 57, 281 CAS; (c) P. J. Ashley and E. G. Torrible, Can. J. Chem., 1969, 47, 2587 CAS.
  4. K.-J. Kim and K. Kim, Tetrahedron Lett., 1997, 38, 4227 CrossRef CAS.
  5. T. Sakamoto, Y. Kondo, D. Uchiyama and H. Yamanaka, Tetrahedron, 1991, 47, 5111 CrossRef CAS.
  6. S. Mataka, A. Hosoki, K. Takahashi and M. Tashiro, Synthesis, 1982, 976.
  7. S. A. Lang. Jr. and Y.-i. Lin, in Isoxazoles and their Benzo Derivatives, Comprehensive Heterocyclic Chemistry, eds. A. R. Katritzky and C. W. Rees, Pergamon, New York, 1984, ch. 4.16, p. 1 Search PubMed.
  8. (a) D. J. Brunelle, Tetrahedron Lett., 1981, 22, 3699 CrossRef CAS; (b) C. Kashima, S. I. Shirai, N. Yoshiwara and Y. Omote, J. Chem. Soc. (C), 1980, 826 Search PubMed; (c) C. F. Beam, M. C. Dyer, R. A. Schwarz and C. R. Hauser, J. Org. Chem., 1970, 35, 1806 CrossRef CAS; (d) J. Larkin, M. G. Murray and D. C. Nonhebel, J. Chem. Soc. (C), 1970, 947 RSC; (e) A. L. Baumstark, D. R. Chrisope, R. A. Keel and D. W. Boykin, J. Heterocycl. Chem., 1980, 17, 1719 CAS; (f) A. E. Siegrist, Helv. Chim. Acta., 1967, 50, 906 CAS; (g) N. Ichinose, K. Mizuno, T. Tamai and Y. Otsuji, Chem. Lett., 1988, 2, 233; (h) W. B. Renflow, J. F. Witte, R. A. Wolf and W. R. Bohl, J. Org. Chem., 1968, 33, 150 CrossRef; (i) T. Uno, K. Machida and K. Hanai, Chem. Pharm. Bull., 1966, 14, 756 CAS; (j) J. B. Carr, H. G. Durham and D. K. Hass, J. Med. Chem., 1977, 20, 934 CrossRef CAS; (k) R. W. Lockhart, K. W. Ng, P. E. Nott and A. M. Unrau, Can. J. Chem., 1969, 47, 3107 CAS; (l) A. Alberola, L. Calrvo, T. R. Rodríguez and C. Sanudo, J. Heterocycl. Chem., 1992, 29, 445 CAS; (m) J. F. Hansen, Y. I. Kim, S. E. McCrotty, S. A. Strong and D. E. Zimmer, J. Hererocycl. Chem., 1980, 17, 475 Search PubMed.
  9. X.-G. Duan, X.-L. Duan and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1997, 2831 RSC.
  10. (a) N. Baumann, B. Heibel, J. V. Jouanne, H. Keller-Rudek and A. Kubny, in Gmelin's Handbook of Inorganic Chemistry, Sulfur-Nitrogen Compounds, Part 2B, ed. B. Heibel, Springer-Verlag, Berlin, 8th edn., 1984, ch. 5, p. 128 Search PubMed; (b) K. Kim, J. Cho and S. C. Yoon, J. Chem. Soc., Perkin Trans. 1, 1995, 253 RSC references are cited therein.
  11. When toluene was used as solvent, SbCl5 reacted with it to form a complex.
  12. Mass spectral fragmentations of 3-phenyl-1,2,5-thiadiazoles give a fragment (m/z) corresponding to a benzonitrile cation radical. C. L. Pedersen and J. Møller, Acta Chem. Scand., Ser. B, 1975, 29, 483 Search PubMed.