Bifunctional catalysts for catalytic asymmetric sulfur ylide epoxidation of carbonyl compounds

(Note: The full text of this document is currently only available in the PDF Version )

Varinder K. Aggarwal, Louise Bell, Michael P. Coogan and Philippe Jubault


Abstract

Carbonyl epoxidation using diazo compounds mediated by catalytic quantities of sulfide and metal catalyst has been investigated using sulfides linked to the metal catalyst. In this study a range of bis-oxazolines with pendant sulfides were tested in the asymmetric epoxidation process using Cu(I)Br (this was the optimal metal catalyst). Although the enantioselectivity was poor (< 24% ee), it was possible to use a much lower catalyst loading (5 mol%) than we had previously achieved (20 mol% was the lower limit) without compromising the yield. This is believed to be because ylide formation is now an intramolecular process and therefore fast compared to the reaction of the metal carbenoid with the diazo compound (resulting in stilbene formation) which no longer competes significantly.


References

  1. R. A. Johnson and K. B. Sharpless, in Catalytic Asymmetric Synthesis, ed. A. Ojima, VCH, New York, 1993, p. 103 Search PubMed.
  2. T. Katsuki and V. S. Martin, Org. React., 1996, 48, 1 CAS.
  3. T. Katsuki, Coord. Chem. Rev., 1995, 140, 189 CrossRef CAS.
  4. E. N. Jacobsen, in Catalytic Asymmetric Synthesis, ed. I. Ojima, VCH, New York, 1993, p. 159 Search PubMed.
  5. Z.-W. Wang, Y. Tu, M. Frohn, J.-R. Zhang and Y. Shi, J. Am. Chem. Soc., 1997, 119, 11 224 CrossRef CAS.
  6. V. K. Aggarwal, H. Abdel-Rahman, L. Fan, R. V. H. Jones and M. C. H. Standen, Chem. Eur. J., 1996, 2, 212.
  7. V. K. Aggarwal, J. G. Ford, A. Thompson, R. V. H. Jones and M. C. H. Standen, J. Am. Chem. Soc., 1996, 118, 7004 CrossRef CAS.
  8. A. Pfaltz, Acc. Chem. Res., 1993, 26, 339 CrossRef CAS.
  9. A. Pfaltz, Acta Chem. Scand., 1996, 50, 189 CrossRef CAS.
  10. R. E. Lowenthal, A. Abiko and S. Masamune, Tetrahedron Lett., 1990, 31, 6005 CrossRef CAS.
  11. R. E. Lowenthal and S. Masamune, Tetrahedron Lett., 1991, 32, 7373 CrossRef CAS.
  12. D. Müller, G. Umbricht, B. Weber and A. Pfaltz, Helv. Chim. Acta, 1991, 74, 232 CrossRef.
  13. D. A. Evans, K. A. Woerpal, M. M. Hinman and M. M. Faul, J. Am. Chem. Soc., 1991, 113, 726 CrossRef CAS.
  14. D. A. Evans, K. A. Woerpel and M. J. Scott, Angew. Chem., Int. Ed. Engl., 1992, 31, 430 CrossRef.
  15. H. Seki, K. Koga, H. Matsuo, S. Ohki, I. Matsuo and S. Yamada, Chem. Pharm. Bull., 1965, 13, 995 CAS.
  16. D. A. Dickman, A. I. Meyers, G. A. Smith and R. E. Gawley, Org. Synth., 1990, Coll. Vol. VII, 530.
  17. This amino alcohol is commercially available.
  18. J. Hall, J.-M. Lehn, A. Decian and J. Fischer, Helv. Chim. Acta, 1991, 74, 1 CrossRef CAS.
  19. G. Koch, Dissertation Thesis, University of Basel, 1995 Search PubMedSee also: H. Witte and W. Seeliger, Liebigs Ann. Chem., 1974, 996 Search PubMed; We thank Prof. A. Pfaltz for bringing this method to our attention.
  20. ZnCl2 has also been used as a catalyst for this type of transformation: C. Bolm, K. Weickhardt, M. Zehnder and T. Ranff, Chem. Ber., 1991, 124, 1173 Search PubMed; M. Nakamura, A. Hirai and E. Nakanmura, J. Am. Chem. Soc., 1996, 118, 8489 CrossRef CAS; However, we observed only partial formation of the bisoxazolines (formation of the non-symmetrical oxazoline) CrossRef CAS.
  21. R. G. Salomon and J. K. Kochi, J. Am. Chem. Soc., 1973, 95, 3300 CrossRef CAS.
  22. G. J. Kubas, B. Monzyk and A. L. Crumbliss, Inorg. Synth., 1979, 19, 90 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.