Cascade radical cyclisations involving enamide double bonds. A synthetic approach to azasteroids

(Note: The full text of this document is currently only available in the PDF Version )

Philip Double and Gerald Pattenden


Abstract

Treatment of the enamide selenoesters 8 and 14 with Bu3SnH–AIBN is shown to lead to the nitrogen tricycle 9 (63%) and the D-homo-12-azasteroid 16 (45%) respectively, by way of serial stereoselective 6-endo-trig radical cyclisations.


References

  1. (a) R. S. Gordee and T. F. Butler, J. Antibiot., 1975, 28, 112 CAS; (b) R. E. Dolle and L. I. Kruse, J. Chem. Soc., Chem. Commun., 1988, 133 RSC.
  2. (a) S. V. Frye, C. D. Haffner, P. R. Maloney, R. A. Mook, G. F. Dorsey, R. N. Hiner, C. M. Cribbs, T. N. Wheeler, J. A. Ray, R. C. Andrews, K. W. Batchelor, H. N. Bramson, J. D. Stuart, S. L. Schweiker, J. van Arnold, S. Croom, D. M. Bickett, M. L. Moss, G. Tian, R. J. Unwalla, F. W. Lee, T. K. Tippin, M. K. James, M. K. Grizzle, J. E. Long and S. V. Schuster, J. Med. Chem., 1994, 37, 2352 CrossRef CAS; (b) X. Li, S. M. Singh and F. Labrie, J. Med. Chem., 1995, 38, 1158 CrossRef CAS and references cited therein.
  3. H. Singh and D. Paul, J. Chem. Soc., Perkin Trans. 1, 1974, 1475 RSC.
  4. R. E. Dolle, H. S. Allaudeen and L. I. Kruse, J. Med. Chem., 1990, 33, 877 CrossRef CAS.
  5. For example, see: J. W. Morzycki, Pol. J. Chem., 1995, 69, 321 Search PubMed.
  6. (a) L. Chen, G. B. Gill, G. Pattenden and H. Simonian, J. Chem. Soc., Perkin Trans. 1, 1996, 31 RSC; (b) A. Batsanov, L. Chen, G. B. Gill and G. Pattenden, J. Chem. Soc., Perkin Trans. 1, 1996, 45 RSC; (c) G. Pattenden and L. Roberts, Tetrahedron Lett., 1996, 37, 4191 CrossRef CAS; (d) S. Handa, G. Pattenden and W.-S. Li, Chem. Commun., 1998, 311 RSC.
  7. During the course of this work a contemporaneous study was published using cationic cascades: S. E. Sen and S. L. Roach, J. Org. Chem., 1996, 61, 6646 Search PubMed.
  8. For studies of the use of imines as electrophores in radical cyclisations see: W. R. Bowman, P. T. Stephenson and A. R. Young, Tetrahedron, 1996, 52, 11 445 Search PubMed For reviews on the synthesis of heterocycles by radical cyclisation processes see: F. Aldabbagh and W. R. Bowman, Contemp. Org. Synth., 1997, 4, 261 CrossRef CAS; A. Fallis and I. M. Brinza, Tetrahedron, 1997, 53, 17 543 Search PubMed.
  9. All new compounds showed satisfactory spectroscopic data, together with microanalytical and/or mass spectrometry data. Data for 9: δH(500 MHz, CDCl3; J/Hz) 3.73 (1H, dd, J 13.9 and 8.3, CHHN), 3.43 (1H, dd, J 13.9 and 7.1, CHHN), 3.37 (1H, app. td, J 10.7 and 2.8, CHN), 2.51 (1H, app. t, J 7.7, COCH), 2.48–2.30 (2H, m, CH2CO), 2.14 (3H, s, NCOCH3), 2.10 (1H, m), 1.97 (1H, m), 1.91–1.73 (4H, m), 1.56–1.38 (5H, m), 1.32 (1H, m), 1.12 (1H, m), 0.71 (3H, s, CCH3); δc(125.8 MHz, CDCl3) 209.8 (s), 171.9 (s), 57.4 (d), 57.1 (d), 52.0 (d), 40.7 (s), 40.4 (t), 40.1 (t), 36.0 (t), 31.7 (t), 26.4 (t), 26.1 (t), 25.6 (t), 23.6 (q), 22.3 (t), 13.0 (q); vmax(liquid film)/cm–1 2934 (s), 2359 (s), 1714 (s), 1634 (s), 1454 (s), 1200 (s), 1049 (m), 668 (s); m/z(EI) 263.1883 (M+; C16H25NO2 requires M, 263.1885). Data for 16: δH(360 MHz, CDCl3) 3.55 (2H, m, CHCH2N), 3.32 (1H, dd, J 10.6 and 2.6, NCHCH2), 2.32 (3H, m), 2.11 (3H, s, NCOCH3), 2.15–0.97 (18H, m), 0.85 (3H, s, CCH3), 0.83 (3H, s, CCH3); δC(90.6 MHz, CDCl3) 212.2 (s), 171.8 (s), 59.4 (d), 57.9 (d, br), 55.8 (d), 55.0 (d), 43.0 (s), 41.7 (t, br), 40.8 (t), 37.6 (t), 36.3 (t), 33.9 (s), 33.6 (t), 26.6 (t), 25.4 (t), 25.3 (t), 23.0 (q), 22.1 (t), 17.1 (t), 14.7 (q), 13.4 (q); m/z(EI) 331.2500 (M+; C21H33NO2 requires M, 331.2511).
  10. In a typical procedure, a solution of Bu3SnH (60 mg, 0.21 mmol) and AIBN (7 mg) in degassed benzene (2 cm3) was added dropwise over 2 h to a refluxing solution of 8(70 mg, 0.17 mmol) and AIBN (8 mg) in degassed benzene (38 cm3) under argon, and the solution was then heated under reflux for a further 2 h. The solution was evaporated to dryness in vacuo, and the residue was then purified by chromatography on silica using EtOAc–light petroleum (bp 40–60 °C)(1∶3) as eluent to give the tricycle 9(30 mg, 65%) as a colourless oil.
  11. C16H25NO2, M= 263.37. Triclinic, a= 5.884(2), b= 9.265(3), c= 13.687(6)Å, a= 77.23(3), β= 83.17(4), γ= 76.63(3)°, V= 706.2(5)Å3, T= 150(2) K, space group P[1 with combining macron](No. 2), Z= 2, Dx= 1.239 g cm–3, µ(Mo-Kα)= 0.080 mm–1. Structure solution and refinement employed all 2464 unique reflections. Final R1[2071 F≥ 4σ(F)]= 0.0438, wR2[F2, all data]= 0.106, S[F2]= 1.15 for 174 refined parameters. Full crystallographic details, excluding structure factor tables, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see ‘Instructions for Authors’, J. Chem. Soc., Perkin Trans. 1, available via the RSC Web page (http://www.rsc.org/authors). Any request to the CCDC for this material should quote the full literature citation and the reference number 207/223 Search PubMed.
  12. E. Nakamura, S. Aoki, K. Sekiya, H. Oshino and I. Kuwajima, J. Am. Chem. Soc., 1987, 109, 8056 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.