Wolff rearrangement of diazo ketones derived from N-p-tolylsulfonyl-protected α- and β-amino acids

(Note: The full text of this document is currently only available in the PDF Version )

Jianbo Wang and Yihua Hou


Abstract

Diazo ketones derived from N-p-tolylsulfonyl (tosyl)-protected α- and β-amino acids have been synthesized and their diazo decomposition under standard Wolff rearrangement conditions, PhCO2Ag–Et3N–MeOH, has been investigated. It is observed that, under these conditions, several different reaction pathways, including direct carbene N–H insertion, are possible. The reaction is markedly affected by the N-protecting group, the substrate structure and solvent. For those diazo ketones derived from N-tosyl-protected β-amino acids, the diazo decomposition with anhydrous THF as solvent and PhCO2Ag dissolved in Et3N as catalyst gives the corresponding 5-substituted pyrrolidinones in excellent yields.


References

  1. M. P. Doyle and M. A. McKervey, Chem. Commun., 1997, 983 RSC; T. Ye and M. A. McKervey, Chem. Rev., 1994, 94, 1091 CrossRef CAS; H. Meier and K.-P. Zeller, Angew. Chem., Int. Ed. Engl., 1975, 14, 32 Search PubMed.
  2. K. Balenovic, D. Cerar and Z. Fuks, J. Chem. Soc., 1952, 3316 Search PubMed; K. Plucinska and B. Liberek, Tetrahedron, 1987, 43, 3509 CrossRef CAS; T. Nishi and Y. Morisawa, Heterocycles, 1989, 29, 1835 CAS; P. Darkins, N. McCarthy, M. A. McKervey, K. O'Donnell, T. Ye and B. Walker, Tetrahedron: Asymmetry, 1994, 5, 195 CrossRef CAS; J. Podlech and D. Seebach, Liebigs Ann. Chem., 1995, 1217 Search PubMed; C. Guibourdenche, J. Podlech and D. Seebach, Liebigs Ann. Chem., 1996, 1121 Search PubMed; C. Guibourdenche, D. Seebach and F. Natt, Helv. Chim. Acta, 1997, 80, 1 CrossRef CAS; A. Leggio, A. Liguori, A. Procopio and G. Sindona, J. Chem. Soc., Perkin Trans. 1, 1997, 1969 RSC.
  3. C. W. Jefford, Q. Tang and A. Zaslona, J. Am. Chem. Soc., 1991, 113, 3513 CrossRef CAS.
  4. (a) F. J. Buckle, F. L. M. Pattison and B. C. Saunders, J. Chem. Soc., 1949, 1478 Search PubMed; (b) M. S. Newman and P. F. Beal, J. Am. Chem. Soc., 1950, 72, 5163 CrossRef CAS.
  5. N. Machinaga and C. Kibayashi, J. Org. Chem., 1991, 56, 1386 CrossRef CAS.
  6. (a) M. B. Berry and D. Craig, Synlett, 1992, 41 CrossRef CAS; (b) E. W. McChesney and W. K. Swann, Jr., J. Am. Chem. Soc., 1937, 59, 1116 CrossRef CAS; (c) R. W. Holley and A. D. Holley, J. Am. Chem. Soc., 1949, 71, 2129 CrossRef CAS; (d) J. I. Harris and T. S. Work, Biochem. J., 1950, 46, 582 CAS.
  7. T. Ye and M. A. McKervey, Tetrahedron, 1992, 48, 8007 CrossRef CAS.
  8. Y. Yukawa, T. Tsuno and T. Ibata, Bull. Chem. Soc. Jpn., 1967, 40, 2613, 2618 CAS.
  9. (a) C. W. Jefford and J. Wang, Tetrahedron Lett., 1993, 34, 1111 CrossRef CAS; (b) C. W. Jefford, J. McNulty, Z.-H. Lu and J. B. Wang, Helv. Chim. Acta, 1996, 79, 1203 CAS.
  10. L. E. Burgess and A. I. Meyers, J. Org. Chem., 1992, 57, 1656 CrossRef CAS and references cited therein.
  11. Z. Sajadi, M. Kashani, L. J. Loeffler and I. H. Hall, J. Med. Chem., 1980, 23, 275 CrossRef CAS.
  12. A. M. Sinyagin and V. G. Kertsev, Zh. Org. Khim., 1980, 16, 2447 CAS.
  13. C. N. C. Drey and E. Mtetwa, J. Chem. Soc., Perkin Trans. 1, 1982, 1587 RSC.
  14. Y. Lim and W. K. Lee, Tetrahedron Lett., 1995, 36, 8431 CrossRef CAS.
  15. D. Tanner and P. Somfai, Tetrahedron, 1988, 44, 613 CrossRef CAS.
  16. M. W. Hosseini, J. Comarmond and J.-M. Lehn, Helv. Chim. Acta, 1989, 72, 1066 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.