Spirolactones of tyrosine: synthesis and reaction with nucleophiles

(Note: The full text of this document is currently only available in the PDF Version )

Antun Hutinec, Athanassios Ziogas, Medhat El-Mobayed and Anton Rieker


Abstract

Several quinonoidal spirolactones (1-oxaspiro[4,5]deca-6,9-diene-2,8-diones) 12 have been synthesized chemically or electrochemically by oxidation of the corresponding tyrosine phenols 3. The spirolactones are of considerable value in peptide chemistry, because they react as active esters with amino acid esters to give dipeptides. In the latter, the side chain of the tyrosine moiety is present as a quinol (4-hydroxycyclohexa-2,5-dien-1-one) system, which can be reduced to the genuine tyrosyl dipeptide. Unsubstituted spirolactones also react as active esters but give dipeptides only in modest yields.


References

  1. P. Wipf, Y. Kim and P. C. Fritch, J. Org. Chem., 1993, 58, 7195 CrossRef CAS.
  2. P. Wipf and Y. Kim, J. Org. Chem., 1993, 58, 1649 CrossRef CAS.
  3. A. V. Rama Rao, M. K. Gurjar and P. A. Sharma, Tetrahedron Lett., 1991, 32, 6613 CrossRef CAS.
  4. A. McKillop, L. McLaren, R. J. K. Taylor, R. J. Watson and N. Lewis, Synlett, 1992, 201 CrossRef CAS.
  5. H. Hara, T. Inoue, H. Nakamura, M. Endoh and O. Hoshino, Tetrahedron Lett., 1992, 33, 6491 CrossRef CAS.
  6. A. Rieker, R. Beiβwenger and K. Regier, Tetrahedron, 1991, 47, 645 CrossRef CAS; A. Rieker and B. Speiser, J. Electroanal. Chem., 1979, 102, 373 CrossRef.
  7. G. L. Schmir, L. A. Cohen and B. Witkop, J. Am. Chem. Soc., 1959, 81, 2229.
  8. H. J. Teuber, H. Krause and V. Berariu, Liebigs Ann. Chem., 1978, 757 Search PubMed.
  9. L. A. Cohen and W. M. Jones, J. Am. Chem. Soc., 1962, 84, 1629 CrossRef CAS.
  10. A. Ziogas, PhD Thesis, University of Tübingen, 1993.
  11. B. Speiser and A. Rieker, J. Chem. Res. (M), 1977, 3601 Search PubMed.
  12. E. L. Dreher, PhD Thesis, University of Tübingen, 1979.
  13. M. El-Mobayed, PhD Thesis, University of Tübingen, 1981.
  14. A. I. Scott, P. A. Dodsen, F. Capra and M. B. Meyers, J. Am. Chem. Soc., 1963, 85, 3702 CrossRef CAS.
  15. T. Inoue, K. Naitoh, S. Kosemura, I. Umezawa, N. Serizawa, N. Mori and H. Itokawa, Heterocycles, 1983, 20, 397 CAS; Y. Tamura, T. Yakura, J. Haruta and Y. Kita, J. Org. Chem., 1987, 52, 3927 CrossRef CAS.
  16. A. Pelter, A. Hussain, G. Smith and R. S. Ward, Tetrahedron, 1997, 53, 3879 CrossRef CAS.
  17. A. Rieker, J. Bracht, E. L. Dreher and H. P. Schneider, in Houben-Weyl-Müller, Georg Thieme, Stuttgart, 1979, vol. 7, Part 3b, p. 523 Search PubMed.
  18. M. H. Khalifa, G. Jung and A. Rieker, Angew. Chem., 1980, 92, 739 CAS; M. H. Khalifa, G. Jung and A. Rieker, Liebigs Ann. Chem., 1982, 1068 Search PubMed.
  19. A. Rieker and S. Berger, Org. Magn. Reson., 1972, 4, 857 Search PubMed.
  20. A. Hutinec, A. Ziogas and A. Rieker, Amino Acids, 1996, 11, 345 CAS.
  21. K. Regier, PhD Thesis, University of Tübingen, 1989.
  22. J. H. Barnes, E. T. Borrows, J. Elks, B. A. Hems and A. G. Long, J. Chem. Soc., 1950, 2824 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.