Chemical synthesis of globotriose and galabiose: relative stabilities of their complexes with Escherichia coli Shiga-like toxin-1 as determined by denaturation-titration with guanidinium chloride

(Note: The full text of this document is currently only available in the PDF Version )

Dieter Müller, Gabin Vic, Peter Critchley, David H. G. Crout, Nicholas Lea, Lynne Roberts and J. Michael Lord


Abstract

Globotriose [α-D-Gal-(1→4)-β-D-Gal-(1→4)-D-Glc] is the carbohydrate moiety of the globotriosyl ceramide (Gb3), also known as the germinal centre B-cell differentiation antigen CD77, a glycolipid present on the plasma membrane of certain mammalian cells. In Gb3, globotriose functions as the cell-surface receptor for Shiga toxin and for the Shiga-like toxins (verocytotoxins). Here we report the chemical synthesis of globotriose and the corresponding terminal disaccharide, galabiose [α-D-Gal-(1→4)-β-D-Gal]. Globotriose and galabiose are attached via a linker to CNBr-activated Sepharose to generate affinity matrices that permit the one-step purification of recombinant Shiga-like toxin-1 from crude E. coli homogenates. Toxin is released from either of the immobilised saccharides by elution with 6 M guanidinium chloride. After dilution of the denaturant, the released toxin had full catalytic activity. Denaturation-titration experiments show that the bound toxin is released from galabiose-Sepharose at 2.3 M guanidinium chloride, while its release from globotriose-Sepharose requires a higher concentration of 4.8 M. These results indicate that the glucose component of globotriose contributes ≈2.6 kcal mol–1 to the binding energy relative to galabiose.


References

  1. D. W. K. Acheson, A. Donohue-Rolfe and G. T. Keusch, in Sourcebook of Bacterial Toxins, ed. J. E. Alouf and J. H. Freer, Academic Press, London, 1991, p. 415 Search PubMed.
  2. C. A. Lingwood, Trends Microbiol., 1996, 4, 147 CrossRef CAS.
  3. M. Maloney and C. A. Lingwood, Trends Glycosci. Glycotechnol., 1993, 5, 23 Search PubMed.
  4. J. O. Minta and L. Pambrum, Am. J. Pathol., 1985, 119, 111 Search PubMed.
  5. S. K. Sayena, J. Biol. Chem., 1989, 264, 596.
  6. Y. Endo, Eur. J. Biochem., 1988, 171, 45 CAS.
  7. J. L. Brunton, in Molecular Basis of Bacterial Pathogenesis, ed. B. H. Iglewski and V. L. Clark, Academic Press, San Diego, 1990, p. 377 Search PubMed.
  8. F. A. Sylvester, U. S. Sajjan and J. F. Forstner, Infect. Immun., 1996, 64, 1420 CAS.
  9. K. C. Nicolaou, T. J. Caulfield and H. Kataoka, Carbohydr. Res., 1990, 202, 177 CrossRef CAS.
  10. J. C. Jacquinet and P. Sinay, Carbohydr. Res., 1985, 143, 143 CrossRef CAS.
  11. P. Garegg and H. Hultberg, Carbohydr. Res., 1982, 110, 261 CrossRef CAS.
  12. D. D. Cox, E. K. Metzner and E. J. Reist, Carbohydr. Res., 1978, 63, 139 CrossRef CAS.
  13. J. Dahmén, T. Frejd, G. Magnusson, G. Norri and A. S. Carlström, Carbohydr. Res., 1984, 127, 15 CrossRef CAS.
  14. H. Paulsen and A. Bünch, Carbohydr. Res., 1982, 100, 143 CrossRef CAS.
  15. D. Shapiro and A. J. Acher, Chem. Phys. Lipids, 1978, 22, 197 CrossRef CAS.
  16. K. Koike, M. Sugimoto, S. Sato, Y. Ito, Y. Nakahara and T. Ogawa, Carbohydr. Res., 1987, 163, 189 CrossRef CAS.
  17. J. O. Kihlberg, D. A. Leigh and D. R. Bundle, J. Org. Chem., 1990, 55, 2860 CrossRef CAS.
  18. M. Ryd, H. Alfredsson, L. Blomberg, Å. Andersson and A. Lindberg, FEBS Lett., 1989, 258, 320 CrossRef CAS.
  19. C. N. Pace, Methods Enzymol., 1986, 131, 266 CrossRef CAS.
  20. C. Tanford, Adv. Protein. Chem., 1968, 23, 121 Search PubMed.
  21. C. Tanford, Adv. Protein. Chem., 1970, 24, 1 Search PubMed.
  22. R. F. Greene, Jr. and C. N. Pace, J. Biol. Chem., 1974, 249, 5388 CAS.
  23. P. M. St. Hilaire, M. K. Boyd and E. J. Toone, Biochemistry, 1994, 33, 14 452 CrossRef CAS.
  24. P.-G. Nyholm, G. Magnusson, Z. Zheng, R. Norel, B. Binnington-Boyd and C. A. Lingwood, Chem. Biol., 1996, 3, 263 CrossRef CAS.