Synthesis of 3,4-diarylpyrroles and conversion into dodecaarylporphyrins; a new approach to porphyrins with altered redox potentials

(Note: The full text of this document is currently only available in the PDF Version )

Noboru Ono, Hirokazu Miyagawa, Takahiro Ueta, Takuji Ogawa and Hiroyuki Tani


Abstract

3,4-Diarylpyrroles (1) have been directly prepared in 20–50% yield by the reaction of β-nitrostyrenes with aqueous TiCl3 in 1,4-dioxane. Pyrroles 1 were also prepared via Barton–Zard pyrrole synthesis using the reaction of α-nitrostilbenes with ethyl isocyanoacetate followed by de-ethoxycarbonylation. 3,4-Diarylpyrroles have been converted into dodecaarylporphyrins by reaction with aromatic aldehydes. Various aryl groups are readily introduced at the periphery of porphyrins by this method. Phenyl substitution at any of the positions of pyrroles decreases Eox1/2, while E1/2[hair space]red is almost unchanged. On the other hand, substitution of the 2-thienyl group affects both the HOMO and LUMO energies, and the UV-vis spectra of dodeca-2-thienylporphyrins (4f or 4i) are extremely red-shifted.


References

  1. Effects of peripheral substituents and central metals on the redox and optical properties of porphyrins have been extensively studied, see, Porphyrins and Metalloporphyrins, ed. K. M. Smith, Elsevier, Amsterdam 1975 Search PubMed; K. M. Kadish, Progress Inorg. Chem., 1986, 34, 435 Search PubMed for recent reviews, see, B. Franck and A. Nonn, Angew. Chem. Int., Ed. Engl., 1995, 34, 1795 Search PubMed; D. Dolphin, T. G. Taylor and L. Y. Xie, Acc. Chem. Res., 1997, 30, 251 Search PubMed.
  2. P. G. Gassman, A. Ghosh and J. Almlof, J. Am. Chem. Soc., 1992, 114, 9990 CrossRef CAS where many references of electron deficient porphyrins are presentedfor recent papers, see, S. D. DiMagno, R. A. Williams and M. J. Therien, J. Org. Chem., 1994, 59, 6493 Search PubMed; J. Leroy, A. Bondon, L. Toupet and C. Rolando, Chem. Eur. J., 1997, 3, 1890 Search PubMed; E. K. Woller and S. G. DiMagno, J. Org. Chem., 1997, 62, 1588 CrossRef; K. Aoyagi, T. Haga, H. Toi, Y. Aoyama, T. Mizutani and H. Ogoshi, Bull. Chem. Soc. Jpn., 1997, 70, 937 CAS; S. G. DiMagno, A. K. Wertsching and C. R. Ross II, J. Am. Chem. Soc., 1995, 117, 8279 CrossRef CAS; K. Ozette, P. Leduc, M. Palacio, J. F. Bartoli, K. M. Barkigia, J. Fajor, P. Battioni and D. Mansuy, J. Am. Chem. Soc., 1997, 119, 6442 CAS; E. Baciocchi, T. Boschi, L. Cassioli, A. Lapi and P. Tagliatesta, Tetrahedron Lett., 1997, 38, 7283 CrossRef CAS.
  3. C. J. Medforth, M. D. Berber, K. M. Smith and J. A. Shelnutt, Tetrahedron Lett., 1990, 31, 3719 CrossRef CAS; K. M. Barkigia, M. D. Barber, J. Fajor, C. J. Medforth, M. W. Renner and K. M. Smith, J. Am. Chem. Soc., 1990, 112, 8851 CrossRef CAS; J. A. Shelnutt, C. J. Medforth, M. D. Berber, K. M. Barkigia and K. M. Smith, J. Am. Chem. Soc., 1991, 113, 4077 CrossRef CAS; C. J. Medforth, M. O. Senge, K. M. Smith, L. D. Sparks and J. A. Shelnutt, J. Am. Chem. Soc., 1992, 114, 9859 CrossRef CAS; S. Tsuchiya, J. Chem. Soc. Chem. Commun., 1991, 716 RSC; C. M. Drain, C. Kirmair, C. J. Medforth, D. J. Nurco, K. M. Smith and D. Holten, J. Phys. Chem., 1996, 100, 11 984 CrossRef CAS; J. Takeda and M. Sato, Tetrahedron Lett., 1994, 35, 3565 CrossRef CAS; C. J. Medforth, C. M. Muzzi, K. M. Shea, K. M. Smith, R. J. Abraham, S. Jia and J. A. Shelnutt, J. Chem. Soc., Perkin Trans. 2, 1997, 833 RSC and references therein.
  4. Conformational flexibility in dodecasubstituted porphyrins, see, D. J. Nurro, C. J. Medforth, T. P. Forsyth, M. M. Olmstead and K. M. Smith, J. Am. Chem. Soc., 1996, 118, 10 918 Search PubMed.
  5. M. Friedmann, J. Org. Chem., 1965, 30, 859 CrossRef CAS.
  6. A. Furstner, H. Weintritt and A. Hupperts, J. Org. Chem., 1995, 60, 6637 CrossRef; A. Heim, A. Terpin and W. Stiglich, Angew. Chem. Int., Ed. Engl., 1997, 36, 155 CAS and references therein.
  7. A. Sera, S. Fukumoto, T. Yoneda and H. Yamada, Heterocycles, 1986, 24, 697 CAS.
  8. D. H. R. Barton and S. Z. Zard, J. Chem. Soc., Chem. Commun., 1985, 1098 RSC; D. H. R. Barton, J. Kervagoret and S. Z. Zard, Tetrahedron, 1990, 46, 7587 CrossRef CAS; T. D. Lash, J. R. BeBellettini, J. A. Bastan and K. B. Couch, Synthesis, 1994, 170 CrossRef CAS; N. Ono, H. Katayama, S. Nishiyama and T. Ogawa, J. Heterocycl. Chem., 1994, 31, 707 CAS.
  9. X. Zhou, M. K. Tse, T. S. M. Wan and K. S. Chan, J. Org. Chem., 1996, 61, 3590 CrossRef CAS; C. K. Chang and N. Bag, J. Org. Chem., 1995, 60, 7030 CrossRef CAS; S. G. Dimagno, V. S. Y. Lin and M. J. Therien, J. Org. Chem., 1993, 58, 5983 CrossRef CAS; X. Zou and K. S. Chang, J. Chem. Soc., Chem. Commun., 1994, 2493 RSC However, these routes are not always useful for the preparation of β-substituted meso-non-substituted porphyrins, see, C. Kitamura and Y. Yamashita, J. Chem. Soc., Perkin Trans. 1, 1997, 1443 Search PubMed.
  10. D. E. Worrallm, Organic Synthesis, 1941, Coll. Vol. I, 413 Search PubMed; G. Jones, Organic Reactions, John Wiley, New York, 1967, 15, 204 Search PubMed; E. McDonald and R. T. Martin, Tetrahedron Lett., 1977, 1317 Search PubMed.
  11. For a review of nitroalkenes, see, V. V. Perekalin, E. S. Lipina, V. M. Berestovitskaya and D. A. Efremov, in, Nitroalkenes, Conjugated Nitro Compounds, John Wiley, Chichester, 1994 Search PubMed; A. G. M. Barrett and G. G. Graboski, Chem. Rev., 1986, 86, 751 Search PubMed For some recent methods for the preparation of nitroalkenes, see, J. R. Hwru, K. L. Cheng and S. Ananthan, J. Chem. Soc., Chem. Commun., 1994, 1425 CrossRef CAS; R. S. Varma, R. Dahiya and S. Kumar, Tetrahedron Lett., 1997, 38, 5131 Search PubMed; D. Ghosh and D. E. Nichols, Synthesis, 1996, 195 RSC; H. Suzuki and T. Mori, J. Org. Chem., 1997, 62, 6498 CrossRef CAS and references therein.
  12. Synthesis of octaphenylporphyrin (4c) from 2a was reported in a preliminary report, see, N. Ono and K. Maruyama, Chem. Lett., 1988, 1511 Search PubMed Porphyrin synthesis from pyrrole-2-carboxylates via 2-hydroxymethyl pyrroles has now been extensively used, see, N. Ono, H. Kawamura, M. Bougauchi and K. Maruyama, J. Chem. Soc., Chem. Commun., 1989, 1580 CAS; N. Ono, H. Kawamura, M. Bougauchi and K. Maruyama, Tetrahedron, 1990, 46, 7483 Search PubMed; N. Ono, K. Sugi and T. Ogawa, Chem. Express, 1991, 869 RSC; N. Ono, M. Bougauchi and K. Maruyama, Tetrahedron Lett., 1992, 33, 1629 CrossRef CAS; H. Fujii, J. Am. Chem. Soc., 1993, 115, 4641 Search PubMed; T. Fursho, T. Aida and S. Inoue, J. Chem. Soc., Chem. Commun., 1994, 653 CrossRef CAS; N. Bag, S.-S. Cheng, S.-M. Peng and C. K. Chang, Tetrahedron Lett., 1995, 36, 6409 CrossRef CAS; K. Czarnecki, L. M. Proniewick, H. Fujii and J. T. Kincaid, J. Am. Chem. Soc., 1996, 118, 4680 RSC; C. Endisch, J. H. Fuhrhop, Buschmann, P. Luger and U. Siggel, J. Am. Chem. Soc., 1996, 118, 6671 CrossRef CAS; K. Ayougou, D. Mandon, J. Fisher, R. Weiss, M. Muther, V. Schnemann, A. X. Trautwein, E. Bill, J. Terner, K. Jayaraj, A. Gold and R. N. Austin, Chem. Eur. J., 1996, 2, 1159 CrossRef CAS; S. Ito, T. Murashima and N. Ono, J. Chem. Soc., Perkin Trans. 1, 1997, 3161 CrossRef CAS.
  13. D. N. Roberston, J. Org. Chem., 1960, 25, 47 CrossRef CAS; M. Fujii, Chem. Lett., 1992, 933 CAS Nitration of stilbenes is also a good method for the preparation of α-nitrostilbenes, see, E. Hata, T. Yamada and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1995, 68, 3629 Search PubMed.
  14. S. Tsuchiya, J. Chem. Soc., Chem. Commun., 1992, 1475 RSC; S. Tsuchiya and M. Seno, Chem. Lett., 1989, 263 CAS; S. Tsuchiya, Chem. Phys. Lett., 1990, 169, 608 CrossRef CAS.
  15. J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney and A. M. Marguerettaz, J. Org. Chem., 1987, 52, 827 CrossRef CAS; J. S. Lindsey and R. W. Wagner, J. Org. Chem., 1989, 54, 828 CrossRef CAS where modified procedures for tetrarylporphyrins are presented.
  16. J. L. Sessler and S. J. Weghorn, in, Expanded, Contracted and Isomeric Porphyrins, Pergamon, Oxford, 1997 Search PubMed.
  17. Recently, it was reported that porphyrins fused with acenaphthylene rings bring about remarkably red-shifted electronic absorption spectra, see, T. D. Lash and P. Chadraskar, J. Am. Chem. Soc., 1996, 118, 8767 Search PubMed; N. Ono, H. Hironaga, K. Ono, S. Kaneko, T. Murashima, T. Ueda, C. Tsukamura and T. Ogawa, J. Chem. Soc., Perkin Trans 1, 1996, 417 CrossRef.
  18. Reported redox potentials (V vs SCE) of Cu-4a(Eox1/2= 0.55, Ered1/2=–1.32, ΔE= 1.87) and Cu= 4b (Eox1/2= 1.07, Ered1/2=–1.20, ΔE= 2.27), see, J. Takeda and M. Sato, Chem. Lett., 1995, 939 Search PubMed.
  19. K. M. Barkiga, L. Chantranupong, K. M. Smith and J. Fajor, J. Am. Chem. Soc., 1988, 110, 7566 CrossRef CAS; P. Ochsenbein, K. Ayougou, D. Mandon, J. Fischer, R. Weiss, R. N. Austin, K. Jayaraj, A. Gold, J. Terner and J. Fajor, Angew. Chem., Int. Ed. Engl., 1994, 33, 348 CrossRef where conformational effects on the redox potentials of halogenated porphyrins are reported.
  20. S. M. LeCours, S. G. CiMagno and M. J. Therien, J. Am. Chem. Soc., 1996, 118, 11 854 CrossRef CAS.
  21. Oligothiophenes with donor and acceptor groups show better nonlinear optical activity than the corresponding phenylene derivatives, and now opto-electronic materials derived from thiophenes have been extensively studied; see, A. K.-Y. Jen, V. P. Rao, K. Y. Wong and K. J. Drost, J. Chem. Soc., Chem. Commun., 1993, 90 Search PubMed; V. P. Rao, A. K.-Y. Jen, K. Y. Wong and K. J. Drost, Tetrahedron Lett., 1993, 34, 1747 RSC; X. R. Bu, H. Li, D. Van Derveer and E. A. Mintz, Tetrahedron. Lett., 1996, 37, 7331 CrossRef CAS; B. Effenberger and F. Wurthner, Angew. Chem., Int. Ed. Engl., 1993, 32, 719 CrossRef CAS and many other recent papers.
  22. L. F. Fieser, J. L. Hartwell and J. E. Jones, Org. Synth., 1955, Coll. Vol. III, 98 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.