Antitumour polycyclic acridines. Part 5.1 Synthesis of 7H-pyrido[4,3,2-kl[hair space]]acridines with exploitable functionality in the pyridine ring

(Note: The full text of this document is currently only available in the PDF Version )

Markus Julino and Malcolm F. G. Stevens


Abstract

Two series of new 9-(1,2,3-triazol-1-yl)acridines 8 and 11 have been synthesised by base catalysed cyclisation reaction of 9-azidoacridine 5 with either 1,3-dicarbonyl compounds or activated acetonitriles. Ring formation occurred in a regiospecific manner indicating a stepwise ionic reaction sequence. The combination of activating base and solvent, as well as the solubility of the products, are crucial for achieving acceptable yields. Several of the 9-(1,2,3-triazol-1-yl)acridines have been converted to fluorescent 7H-pyrido[4,3,2-kl[hair space]]acridines 14 by Graebe–Ullmann nitrogen-expulsion degradations employing boiling diphenyl ether as the thermolytic medium. In one case, the thermolysis of 9-[4-methoxycarbonyl-5-(4-chlorobutyl)-1,2,3-triazol-1-yl]acridine 16, the chlorobutyl side-chain participated in an additional intramolecular cyclisation step leading to the pentacyclic quinolizino[2,3,4-kl[hair space]]acridine 18.


References

  1. Part 4: E. Giménez-Arnau, S. Missailidis and M. F. G. Stevens, Anticancer Drug Des., 1998, in the press Search PubMed.
  2. A. Albert, The Acridines, 2nd edn., Edward Arnold (Publishers) Ltd., London, 1966 Search PubMed.
  3. W. A. Denny, in The Search for New Anticancer Drugs, ed. M. J. Waring and B. A. J. Ponder, Kluwer Academic Publishers, Dordrecht, 1992, p. 19 Search PubMed; G. J. Finlay, J.-F. Riou and B. C. Baguley, Eur. J. Cancer, Part A, 1996, 32, 708 Search PubMed; B. C. Baguley, Anticancer Drug Des., 1991, 6, 1 Search PubMed; W. A. Denny and B. C. Baguley, in Molecular Aspects of Anti-Cancer Drug-DNA Interaction, ed. S. Neidle and M. J. Waring, Macmillan, London, 1994, p. 270 Search PubMed.
  4. L. A. McDonald, G. S. Eldredge, L. R. Burrows and C. M. Ireland, J. Med. Chem., 1994, 37, 3819 CrossRef CAS.
  5. P. Groundwater and M. A. Munawar, J. Chem. Soc., Perkin Trans. 1, 1997, 3381 RSC.
  6. C. Graebe and F. Ullmann, Liebigs Ann. Chem., 1896, 291, 16 Search PubMed.
  7. D. J. Hagan, D. Chan, C. H. Schwalbe and M. F. G. Stevens, J. Chem. Soc., Perkin Trans. 1, 1998, 915 RSC.
  8. D. J. Hagan, E. Giménez-Arnau, C. H. Schwalbe and M. F. G. Stevens, J. Chem. Soc., Perkin Trans. 1, 1997, 2739 RSC.
  9. Survey: H. Wamhoff, in Comprehensive Heterocyclic Chemistry, ed. K. T. Potts, Pergamon Press, Oxford, 1984, vol. 5, p. 669 Search PubMed.
  10. O. Dimroth, Chem. Ber., 1902, 35, 4041 Search PubMed; J. R. E. Hoover and A. R. Day, J. Am. Chem. Soc., 1956, 78, 5832 CrossRef CAS; R. L. Tolman, C. W. Smith and R. K. Robins, J. Am. Chem. Soc., 1972, 94, 2530 CrossRef CAS; E. Lieber, T. S. Chao and C. N. R. Rao, J. Org. Chem., 1957, 22, 654 CrossRef CAS; H. Wamhoff and W. Wambach, Chem.-Ztg., 1989, 113, 11 Search PubMed; C. E. Olsen and C. Pedersen, Tetrahedron Lett., 1968, 3805 CrossRef CAS.
  11. A. C. Mair and M. F. G. Stevens, J. Chem. Soc., Perkin Trans. 1, 1972, 161 RSC.
  12. Semiempirical calculations were done using MOPAC 7.0 implemented on a Silicon Graphics 10000 Extreme workstation. The PM3 parameters were chosen to calculate the optimised geometry (BFGS procedure). Energy minimisation was done in the PRECISE option. Stationary points were characterised as minima on the energy surface using the FORCE keyword. For PM3 see: J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 and 221 Search PubMed; J. J. P. Stewart, J. Comput. Chem., 1991, 12, 320 CrossRef CAS; J. J. P. Stewart, J. Comput.-Aided Mol. Des., 1990, 4, 1 CrossRef CAS.
  13. K. Vaughan and M. F. G. Stevens, Chem. Soc. Rev., 1978, 7, 377 RSC.
  14. G. Mitchell and C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1987, 413 RSC.
  15. A. Molina, J. J. Vaquero, J. L. García-Navio and J. Alvarez-Builla, Tetrahedron Lett., 1993, 34, 2673 CrossRef.
  16. T. Gilchrist and G. E. Gymer, in Heterocyclic Chemistry, ed. A. R. Katritzky and A. J. Boulton, Academic Press, New York, 1974, vol. 16, p. 33 Search PubMed.
  17. S. N. Huckin and L. Weiler, J. Am. Chem. Soc., 1974, 96, 1082 CrossRef CAS.
  18. S. M. Hannick and Y. Kishi, J. Org. Chem., 1983, 48, 3833 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.